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ABSTRACT

The propagation of long-wave magnetosonic osclllations
of finite amplitude in a plasma with random inhomogeneities
of density, temperature and magnetic field is studied. The
equations describing the evolution of averaged characteris-
tics of the medium ere derived. It is shown that the initial
perturbation splits into two "simple waves" ﬁrcpagating in
the opposite directions. Each of the "simple waves" has a
tendency to the steepening end consequent overturning which
results in formation of shocks.



For understanding the various processes in Solar atmos-
phere the problem of propagation of MHD-waves in a plasma
with random inhomogeneities of density, temperature and mag-
netic field is of the substantial interest. This problem, be-
ing of general interest - in laboratory plasmas the situation
when- all parameters of medium are random functions of coordi-
natea can offen be met - is of the particular importance for
the physics of the Solar atmosphere, where the large-scale
MHD-waves are one of the most important agents contributing
to the energy balance in upper chromosphere and lower Corona.
Previously the different sides of this problem were discussed

in the fremework of the linesr MHD-weves =~ .

In the present paper we consider the influence of the
inhomogeneities on the propagation of the magnetosonic waves
of an arbitrary amplitude, restricting ourselves with one-
~dimensional problem and with the assumption that the charac-
teristic size of the inhomogeneities (L is smell as compared
with the length of the magnetosonic waves A

Q << A

At the same time, we do not agsume that the amplitude of in-
homogeneities is small.

We derive the equations that describe the evolution of
all the averaged (over inhomogeneities) characteristica of
the medium. We show, that in their structure, theae equations
are analogous to the equations for homogeneous medium. In
particular, it remains valid the conclusion that the pertur-
bation of not too large amplitude splits into two "simple wa-
ves", propagating in the opposite directions. Each of the
"gimple waves" has a tendency to the sieepening and consequ-
ent overturning. In the unperturbed state all the plasma
parameters - density p, , pressure P, , temperature Ts
and the magnetic field B, (which is parallel to 2 - directi-
on) - depend only on the coordinate X : p = Palx)

ST SR T,(x) » B, = ® o(x) - From the mechanical

-

eguilibrium condition we have:

7
Polx) + B, ) = ‘-I’n = const (1)
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The pressure P, end the density p, are congidered to be the
random functions of X . For what follows, it is convenient to
introduce the distribution function {(?a,?a) of the random
quentities p, and p, which is defined as follows: the frac-
tion of these segments of the axis X , where P, and P, take
the values in the intervals ( Po, Po+ &Po)s ( Po, Pot dPo)
ig proportional to {(pm Po) do, J.?J

mes X M %(Pm?ﬂ)d‘\jad‘?o
dPa d?a

To describe the magnetosonic waves we use the ideal
MHD-equations:

dv md S

at X

Q_?_..,FEL?U:O (2)
ot ox
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4t

d -0 A L
where Y| is the specific heat ratio, and Jf ~ 3t 0¥ o
Prom the second and the third equations of the system (2)
there follows the line-tying condition:

B _ Bo

—
—

P - ?u_ (3)

where %, and §, are the values of B end p in the point
where the given élement of the medium was located at the ini-
tial instant of time ( t = 0). Similarly, from the equation
the entropy conservation we have

P el = Pa?;\'{ (4)

4

Let's average the first and the second equations of the sys-
tem (2) over the scale that is much larger than the size of
inhomogeneitiea O , but much smeller than the length of mag-
netosonic wave A\ . Denoting this averaging by angulaer bra-
ckets, we find:

G 2

B(\ia N
T 4 -

In order to simplify these equations we use considerations si-

milar to those of paper (11 , devoted to linear waves. Let's

now write an exact equation: ;
o { i

3 Aot p (7)
e Ll e

which follows from continuity equation and constancy of the
enthropy. Since we are considering the motions with the size
A > O ., the logarithmic derivative ddnp/dt , which
can be estimated as ‘v’/.;l , 18 small with respect to v/aq . so
that we find from (7) that

Vo (8)

—

X A Q

This means that despite the presence of the inhomogeneities of
density, pressure end magnetic field which have the scale Q ,
the velocity 'V is a "smooth" function, changing only at a
scale A »> QO . This circumstance allows us to write the
following relations:

d 21 d <v
LR} =

i) = ip ) Oy



These relations are walid with the accuracy of the order of
(a/A) ¢« 4 . We remind that the scale over which the ave-
raging is made is small as compared to A and large as compa-
red to O . As a result we obtain instead of equations (5) and
(6) the following equations

{p) dd@) = %(‘3‘} (9)
BF(E_) %_ py<V) =0 (10)

The form of equations (9) and (10) is similar to that of the
equations for 1D gas dynamics. The analogy would become comp-
lete if we could find the "closing" relationship between { p)
and (\ ? Now we proceed to this part of the problem. First of
all, we note that the density P of each plasma element can
be expresseﬂ in terms of its initial density Pﬁ s pressure

¢ and full pressure at a given point. By using the de-
finition o2 P (P = P + 8%/9r) and the relationships (1),
(3) and (4), we obtain: '

: 3 G}U*Pa 2 |
@:pu(%‘) i _P" P (11)

This relatinnship determines an unexplicit dependence of P
on (‘J ? and P, { g),; is assumed to be known):

-.F:P(@;?n,?“}

Now let's consider a plasma between two planes which are sti-
cked to plasma particles. We assume that the distance .t be-
tween these planes is much larger than (Q and much smaller
than A . When the full preasure 9 15 changing the distance
between the planes is changing too due tothe finite compressi-
bility of plasma. Since the distence { is small compared
with A , the changing of the full pressure is small and we
can put & equal to {@}in a corresponding district. Thus we
can find the density of each element of plasma with the help

(12)

S
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of equation (12) where U® is substituted by {(@P>. The segment

dX of the whole district, corresponding to these elementa is
connected with the segment (X, which these element occupied
in the initial state by the evident relation

Po (13)
PLLDP>,PasPo)

Teking into account that dx, ~ L, {'(Pu.?u)d‘{}qd?g , from
this relation we obtain that

d! = dxa

Po
[ $(pa,34 PILPY, P, Po) dp"di’“ (18)
(4 (Pa.m dpody,

The whole mass of the substance between the planes is obvious-
ly the following

1O I

S?D H‘Pm ) dpodPo
S%(‘Pn, .,) d?n&?a

Dividing this mass by the distance defined by (14) we obtain
the expression for the average density:

L

o § (Pa.90) dpodp.

oD, 2o dp.d
g{-[? ?) P((@>JP°:?u) ; 3

30, in prineciple, one can find the connection between (P} and
{®Y for any distribution function { {ga .Po) - Thus, the re-
lationship (15) together with equations '(9) and (10) forms a
closed system, describing self-consistently the propagation of
longwave magnetosonic oscillations of finite amplitude in an
inhomogeneous plasms. As a result the problem under considera-
tion becomes quite analogous to the problem of onedimensional -
compressible gas. In the ordinary gas dynamics the initial

(p)=




perturbation of finite amplitude splits into two "simple waves",

propagating in left and right directions. Each of the simple
waves is gradually steepening and finely overturning. That
leads to the formation of shocks. The comdition for overtur-
ning reads (see (61 - %94):

du <o (16)

o AT .
where W=V+C ang V= S _‘Pd‘?’ S dP/C{.P « The
condition (16) can be represented in more general form through
the relationship between density and pressure. Actually, using

the expression for V the condition (16) can be written as
follows:

or ag follows:

e
g e (1)

r
v_ d
substituting here ¢ . we obtain

Pl ol
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Performing the derivetion instead of condition (16) we have

2
Pt—%(i( \ (18)

In general the conclusion about overturning is connected with
the dependence of p on {® ) that is with the concrete form
of & function p= R ({Ef‘}) in accordance with (18) the over-
turning takes place if it is satisfied the condition :

=4

poinie goph¥ (19)

here the stroke means the derivetive O [d{®)taken in the
point where By e ‘?o . For the ideal homogeneous gaﬂ this
condition is sutomatically satisfied because of R ~ ¢ e
Y >1 . Let's elucidate now if the condition (19) is satis-
fied in our case when the function R (< ®?) is defined by
the expression (15). The first and second derivatives of this

function have a form: a
Ej__R____ g? {‘{P ? )CI;P d? H’(Pﬂr?ﬂ) j;a ﬁ%jf?)d‘?ﬂd?c
3 T 1 ﬂ[gj%[pm?) d-{] (,i?] (20)

R _g

WYL (P01 \"‘P*d?

of
{ {g%('?n\?a) P2 3<m>dp'ﬂ ?] (21)
[ {4(pa,po ) L doodpo]’

e, 2
(P"’MP aa@:ﬂ P (%?\} } dps dps S
[SHPuMLdPodH

Compose now the condition (19) with the help of expressions

(15), (20) and (21): !
{ P“?)jm %ﬂ?od%l_f

?1 ) H&Pﬂd?]

0
i ‘Ph?)[ H\)‘ﬂ rl 4 L& Hpad?

| HKPMM Jﬁd?adﬂ
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In this inequality the first term in left hand side is redu-

ced with the right hand side and the condition (19) takes =a
form

| S?o{(f’ﬂr-?ﬂ)‘*%""?ﬁ solo
((§(enp ]En-df* dy f'“lﬁ*?“)[ P2 ( m)) +
y Ve o a ¥

i
+% %i]dpud?, i)

It is obvious beforehand that
\ %“ FPus gu)dpatiat 20

and the condition (19) is reduced to the form.

\{(Pﬂt?“ﬂ 255 L?Ej g E?% S—Zé—-ﬁ)d?ﬂ{iyn<o (22)

Now let's find the expressions for a? / B( ? and

Blj)/'a(ﬂ") « Derivating the equation (11) over LB we can
find the expression for 'ﬂ? / 0L

0o Rso
WO " YL@y + (B-7) Sooe
Pe

After simple calculations and transformation for the second
derivative one can obtain the following expression:

10

ﬁ—[zg(}—(%x ?J =Py

R T

1{D) L y (D .sz ]
These derivatives taken in the point (P = @o become as
follows:

3_5: , = 2o o

12851 @, 5, ypo+2 (Pop)

3%p \ bl P2 (80
34@71 0 P{J [\ﬁpﬂh}%(@“_\ba)lg

Substituting these expressions into the condition (22) we
obtain:

| ‘6(“‘*{)Pﬂ+é~f@0"Pﬂ)d {! <O |
P ?a, 2 i o (23}
g“ s ) U’Po +2(fpﬁ‘?-s)]3 P-4

In accordance with the mechanical equilibrium condition (1)
the magnitude (U—'-"u— P, ) is always positive:
2
P —p = —= >0
2 ~ Po o3

That meens that integrand in the expression (23) is definite-
ly positive. Thus the condition (23) as well as the condition
(19) is satisfied for any distribution function -E [Pu ; ?b)

and it is valid the conclusion that the magnetosonic wave of
finite emplitude propegeting in a plasma with raendom inhomo-
geneities splits into two simple waves with consequent stee-
pening and overturning. Note that when the width of the wave-

el



=front becomes comparable with the characteristic scale of
inhomogeneitieas our assumption may not be valid. In this case
the dispersion effects play an essential role, since at A~
the dispersion of magnetosonic waves becomes nonlinear and
gteepening of wavefront ceases. Corresponding effects need
the separate investigation.

Thus, we have shown the way to get the equations descri-
bing the evolution of longwave magnetosonic oscillations of
finite amplitude propagating in a plasma with random inhomo—
geneities of density, temperature and magnetic field. It is
ghown that the influence of these inhomogeneities (which are
not essumed to be small) is such that the initial perturbati-
on splits into two simple waves resulting in steepening effect
and formation of shocks. The problem under consideration is
of particular interest for heating processes in active regions
of Solar atmospher§ which are seats of strong magnetic fields
concentrated in tightly settled flux tubes.

g =i
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