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ABSTRACT

The correlator of axisl-vector current and of current
with the proton quantum numbers in an extermal fermion field
is considered. The QCD sum rules for this correlator are used
to find p —= e % or Pp—> 'ﬁe']'[,*' proton decay rates in
minimal SU(5) grand unified theory (GUT). The result obtained
is clogsed to that of ref. [15] found either in pole approxima-
tion or by extrapolating PCAC formulas from nonphysical region.



To describe properties of the lowest hadron states the
QCD sum rules method originally proposed in ref. [1] is now
widely used. Meson [1,2] and baryon [3-5] masses, meson form-
factors and couplings [ﬁ—B] had been calculated using this me-
thod. In refs. £9,1DI the QCD sum rules for polarization opera-
tor of nucleon current in an external electromegnetic field
first suggested in ref. [9] were applied to calculation of nu-
cleon and hyperon maegnetic moments. Analogous sum rules in an
external axial field were used in ref. [11] to calculate vec-
tor and axial constants of octet baryons.

In this paper the QCD sum rules for the correlator of
axial and proton currents in an external fermion field are ap-
plied to finding matrix elements of the following operators

Wp = (WCHMW) ¥Pd  Eqp, , C= Yol

(1)

M= "CCLQCXH ) xr&‘feabc
between proton p and pion JU with the momentum hl"' being of
order of the proton mass M . Here W, Gl. are the quark field
operators, a,b,c are the colour indeces. These matrix ele-
ments arise, for example, at calculation of amplitudes of the
decays p > e’ Y (the dominent mode) and p —»= geﬁt-b in mi-
nimal SU(5) GUT. These amplitudes are connected with each other
by means of isotopic transformation. For definiteness, we con-
sider the decay p -» et 5%,

Calculations of the nucleon matrix element of the SU(5)
beryon number changing Lagrangian were repeatedly made using
different quark models for nucleon (for reviews see ref. [13]).
The results were scattered in a rather large interval leading
to uncertainty of one and a half-order of magnitude in the pro-
ton lifetime. In ref. [15] this matrix element was first cal-
culated without using any nucleon model with the help of the
matrix element (0\1‘LP[P'> previoualy found in refs. [3.4]
by the QCD sum rules method. Calculations [15] had been made in
pole approximation retaining the lowest baryon state ,.E-,“ the
lepton channel of a decay p —» IM (I = e, W7, ge, Y,

M =T{,P W' K). In the case M = the pole approximation was
checked by some extrapolation of PCAC formula from k!"*= 0 to
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rhysical point “ﬂ " m (earlier the PCAC method was uged
in ref. [‘!4]). Hawever, the extrapolation mentioned is not,
generally speaking, unambigious procedure. So it is desirable
to give an independent ground for the pole model. The follo-
wing calculation is not restricted by the lowesat baryon state
in the lepton channel but takes into account contribution of
the higher hadron states in this channel as well., The latter
turns out to be amall, approximately 10%, thus ensuring the
validity of the pole approximation.

More specifically, let us introduece the notation
ATt
o = i== @ U
= 1
<IN P|P> ¥z TP (2)

where ¢3-£ ' LLP are the pion and proton wavefunctions, res-
pectively, WIAL being equal to 2m. Then the matrix element of
interest takes form

M(P+3+.'i'[°} =Aﬁt% GGUMEQ+(35"3)N'P (3)
where Gguu/V2 = ﬁ?éum/g m% = Sﬁun /8 mﬁ,

is the effective four-fermion constant of the SU(5) low-ener-
gy Lagrangien, A is s factor responaible for the renormaliza-
tion of operators entering the Lagrangian, ue'l' ia the lepton
spinor. It is found in ref. [15] within the pole model that

pu'le an'\’— p i
= p——= _g‘n: ?‘%A (4)

(the second equality implies Goldberger-Treiman relation) whe-
re {OlT\,PIP)‘ Px's llP : g-n is the I NN coupling,.
gn/q:.: = 14, Qp = 1.25, § = 133 MeV. The PCAC formula
extrapolated from nonphysical region results in

PCAC ﬁ
- (1+G,) (5)
A o 3a

with unity in the garentheaes relevant to the commutator term.
Then the ratio AP AE/AE;:IE is 0.9. Finally, our result
reads

i

ll__..—:.'""—-'—"‘

—

\
/A ¢

JLG‘CD f (33a-1)
X
being

equal to 1.1.

(6)

Let us note that the experimental lower limit
'E(P—}€+ﬁtu} > {032 years egtablished by the IMBR group
[16] more than an order of magnitude exceeds the upper limit
[1 5] for this value in minimel SU(5) and thus it seems to ru-
le out this model. This result, however, would not exclude
philosophically similar models such as those based on S0(10)
(for reviews see ref. [13]}. Restrictions on superheavy boson
mass M i in these models are relaxed as compared to those in
minimal SU(5). Then Tmqu can be larger.

Let us explain in what way (6) can arise in the framework
of QCD sum rules. The latter follow from calculations conside-
red below and take the form

fﬂtﬁ’“?‘ =€IP(%)(MG+ %Q.z') (7)

where tilde means multiplication by (2'4'[’)2, M is a parameter
(of some Borel transformation specified below), Q@ =

= -(27 )2 < 9q» is the quark condensate. On the other hand,
one should take into account the sum rules forﬁ [3 4]

2 8% = exp M,_)(M 4 ) (®

and for (g - 1) [111 as well

2
(gp;-‘u)ﬁ = exp(:,_)%a?' (9)

0f course, the continuum contribution must be subtracted from
the RHS of (7-9). The dependence of (7) on M, O, M can be
eliminated with the help of (8,9) yielding (6).

Let us proceed now to derivation of (7). Suppose that
there is an external positron field E"' with a momentum q res-
ponsible for appearance of the term e 'Q (x)exp(igx) +
+ 'YJP (x)e exp(-:iqx} in QCD Legrangian.. The momentum q satisfies



the condition 1‘: z o~ (0 . Consider the correlator of M
e 2 P

and axial current Ai - 2"'1"’2 ('ﬁ'_x X, u...'ax X, d)
AYS AN5
placed in this field:

K=t Sejhx(el-r { éi(a’,) ]7_1?(0)} \0%+cl“x (10)

It is clear that Kj\ differs from zero only leading off the
first order of it's expansion in E+, et series in which the
term proportional to 8" i3 just of ixéterest for us. Really,
contribution of the transition P-'r".ﬁ. into K}«. is

'1"5' 1 h?\ E*(PH— m.]rs
ﬁ T T\':@ k?' P‘L__ m‘l
where P'—‘r q'i'h is the proton momentum, and we neglect the
pion mass. On the other hand, cn{midar {_:_;.:-.era'tor product expan-

sion (OPE) for the T-product of &}\ and TLP (in the external
field €7) wvalid for P‘L, laying in the deep Euclidean regi-

R) —R (ptk
K{‘E(Cﬂﬂ);& (ehin o p B (2R,

(11)

&
(12)

Y ,‘).<ownto>

where On are operators, Cn,Dn seee are the coefficient
functions of PQ‘,- at the independent x -matrix structures
chosen in (12) in a way convenient for us. The dependence on g’
can develop itself either in the coefficients cl\ ’Dh."“ or
in the vacuum expectation values (VEV's) of the operators On
in the external field. If a parameter M is considered as the
neturel normalization point of OPE then the first possibility
ig realized for configurations in which interaction with exter-
nel field occura at the distances smaller than M (see Figs.
1,2) while interaction at the distances larger than M'.1 (whick
is possible due to lq’-\@’. M'z' ) is included into definitfion of
the VEV's in the field &' (see Fig. 3).

The Borel transformastion in one [1] or two [_6-1 momen tum
varisbles is probably the most convenient meens to pick out the
lowest resonance gontribution into correlator and to improve
convergence of OPE series. As it follows from subsequent analy-
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gis it is convenient to use in parallels the two methods: the
one-dimensional Borel transformation in = =-—-h2' and the
two-dimengional one in-Pa,"hz. The sum rules are formulated
for the coefficient at the structure (h"i‘ P)A(w\"l' FP) .
Let the coefficients Cl‘l in (12) with numbers n = 1,2,3 corres-
pond to contributions of Figs. 1,2,3 respectively. Let us be=
gin with the asymptotic loop of Fig. 1. The corresponding co-
efficient C;‘(P% ) is known as an analytical function of
the two variables (given in the form of a definite Feymnman in-
tegral). It is then a straightforward matter to calculate it's
imege at the double Borel iransformation BPBT[ in —F?' ,"Rl
with paremeters ,t‘;{reapectiwrely. The Borel transforma-
tion of an analytical function 'f(s] in S with parametert is

defined as

- E+ioo |

f(t)E Btf(S)"'—'-g ZC'JI.I‘SIJC E'&:P(‘St")'s(S)J E>0 (13)
g-ioo

Explicit calculation of the diagram of Fig. 1 with taking into
account (11) gives the following sum rule for ?\31:

SrAn® oMY L hiher states =
tj'.;tp BTP( .LP)'\- \gher s CLQ- S =
tp th (,_te i tp
— — el e - b o ._'_‘l'l +
+|. L) tﬁ t-.]-t + —tjt

Multiplying (14) by itpﬁtj[, putting t’l‘.‘. =090 gnd introducing
the notation 'tP:M we get

f‘n'x’lt? = ewP(%)(MG + O(M*)+.. ) (15)

This expression implies the following three circumstances.
Firstly, the other operators developing non-zard VEV's have
dimension }_‘;-_. 4. Secondly, positive powers of 't-n turn into
the ssme powers of the duality interval for pion, i.e., they
are finite. Thirdly, exponentially (in masses) suppresséd con-
tribution of higher states is considered to be subtracted from
the RHS of (15) in a model way following the usual rules, i.e,

(14)
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the replacements like

i _Se So 9S8 :

M= M [4 e&:p( Mﬂ_)(q-i- M1~+ Tk (16)

are implicit. Here Sg is a continuum threshold in the pro-
ton channel.

The rest of power corrections relevant to interaction
with the field &' at short distances can be calculated analo-
gously. We have computed the correction due to YWWY (see
Fig. 2). It is the nearest correction with an odd number of

¥ -matrices strengthened by the loss of the two small loop
tactors {1631'.1}'1. As for the large distance superweak inter-
action (see Fig. 3) we do not possess sufficient information
about spectral properties of the function C L3 (Pqi kﬁ') requi-
red to perform the double Borel transformation of this functi-
on. Let us parametrize corresponding contribution into the sum
rules by a constant C? and write down

s = ewp(F)(mE+ $024CF)  n

where the three addendsrp'nanrenthesea are determined by the dia-
grams of Figs., 1,2,3 .respectively. The power of M in the
last term is determined from dimensional consideration by com-
parison with the case P7‘=l'{1{sea below).

The function C:.s (P% hz) is known, however, at Pzz hz
(theoretically, we know even an arbitrary finite number of
terms of it's expansion in fPl-' P\E) series around the point

P'L — k?' ) entering correlator in combination with the VEV

<Ol%¢?$lﬂ>§+ in the: external field &'. Let us out-
line here a way to calculate VEV's of such the kind. First,
the general Lorentz covariant structure of these VEV's must be
writing out, for example:

E*P S 01 TVRd (RPY,CTO) o) oy =

To determine the constants & , § one should multiply (18)
by QH?‘ and by a,’tL and take into account the equations
of motion of quark fields in the external field et;

(18)

8

W= 2 (et xrkol“) e yteabe

: a I ey =+ abe (19)

wat = wecytuse YrLE.

Az a reauit, K . f-'b can be expressed through the purely QCD

VEV'es of the four-quark operators celculable within factoriza-
tion hypothesis.

Let us multiply correlator by K’Z and apply the Borel
transformation in -'Pz='-* * with a parameter M. Doing so
we cannot suppress contribution from the transitions P"" A{.
«+« exponentially (in masses)., Forgetting this circumstance
for a moment we can write down

~ A Z
fxAx § = C€XP ('E‘i) [(Ms-i‘ Ciﬂ)Mq)'l'% o+ %u‘f‘] (20)

Here the three addenﬁs;ﬁzr}ackets are 1ike (17) the contributi-
ons from the diagrams of Figs. 1,2,3, respectively. The un-
Inmown constant C:a) has appeared because of the presence of

UV divergent subdiagram I in the asymptotic loop of Fig. 1 and
should be specified by imposing a normalization condition on
this subdiagram. The corresponding subtraction term in

Cy (P% R®) 1s proportional to and it is not cancelled
by the one-dimensional Borel transformation. However, comparing
(17) and (20) allows us to determine the both.unknown constants

:‘% and to arrive at (7).
[

Consider now in more detail the eipnnentially unsuppres-
sed contribution of higher states previously omitted in (20).
If only short-distance superweak interaction is taken into
account then the double spectral density is known. Therefore
the higher states can be accounted for in the model way as it
was already done in (16), Thus, it is the contribution from
transitions P> A{,... induced by superweak interaction at
large distances which is potentially dangerous for us. It is
possible, however, to estimate this contribution in a modelless
wey. Such the posgibility arises due to existence of X -mat-
rix structures, namely X)& and [X-:'*l ], gaturated by transi-
tions of proton into axial-vector states A y not into pion.
These transitions can be parametrized by adding the terms

9
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SEH'E@ XH'U.,P ( &B'_is the polarization of A\ ) to
the phenomenological Lagrangian for the proton decey. Then the
sun rules for % can be derived by investigating coefficients
at the structures either X)- or [rmk] in the correlator,
Explieit calculations with both these methods of the graphs of
intereat of Fig. 3 yield zero contribution to g « Therefore
the transitions into axial-vector states induced by long-dis-
tance superweak interaction do not contribute into our sum ru-
les (20) at the level of power corrections accounted for.

Thus, parallel use of both the two- and one-dimensional
Borel transformetions allows one to extract & sufficient in-
formation about superweak interaction in both the shorit- and
large-distance regions. I;e‘t: us note that taking into account
large distances (last term in (20)) enhances ﬂ:“- by 40% which
leads to the corresponding decay rate two times enlarged.

Finally, some words are in order concerning the structure
A{with the even number of ¥ -matrices). We have calculated
contribution to this structure of the VEV'a <‘+"§’> and
<'~§§5“\i5 >€+ s the latter VEV being estimated in the proton
dominance model, for example

Mg = + BRI T{p(X), Mp(}l 0> doc +
(21)
£ 0 (P 2-£.2 + 0(E)

The sum rules take the form e
~ o & 2z
gnlmg,:emp(%)(al"lq+ %{M ) (22)

Now we do not manage to eliminate M-dependence and to get a
simple expression of the type of (6) for }v}-[ in terms of expe-
rimentally measured quantities. However, the duality estimate
at M - ﬁ? . Sqﬁ 2 GeV can be performed giving

Aa.sfb/ ;@; = o~ i in this approach and thus demonstrating
& congistency of the sum rules.

In conclusion, the author is grateful to V.L.Chernyak who
has drawn my attention tc this problem, for consideration of
the work; to V.M.Belysev and A.I.Vainshiein for helpful discus-
gicns and to I.B.Khriplovich for attention to the work.
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Figures

Fig. 1.Asymptotic loop.

' W,

Fig. 2.Graph giving rise fo

the operator L[J_lp W q!-.

—
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da @i
Fig. 3. Graph relevant to the VEV's

— e = e o et
<-.p;pug>§+ ’ <VH‘P‘I’“|">-§+ S in the external field €
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