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Institute of Nuclear Physics,
630090, Novosibirsk, U S S R

Abstract

Parity violating JUNN vertex is calculated in the frame-
work of the standard model using the QCD sum rules method. The
result obtained is consistent with the experimental data.

1. Introduction

Recently the QCD sum rules method suggested in the paper
[1] is widely used to describe properties of the lowest hadron
gtates, The masses of mesons [1-2] and of baryons [3-5] , form-.
factors and meson cuupliﬁg constants [6-E] have been calcula-
ted with this method. In refs.[9,10] the QCD sum rules for
polarization operator of nucleon current in an external elect-
romagnetic field first suggested in ref. [9] were used for cal-
oulation of the magnetic moments of octed baryons. In ref. [1 1]
using analogous sum rules in an exterpal axial field the axial
constants of octed baryons were calculated.

In this paper the QCD sum rules method Tor correlator of
two nucleon currents in the presence of weak interaction is ap-
plied to celculation of the parity violating TJUNN vertex (in
the soft pion limit). The given vertex is interesting as that
acquiring the dominant contribution from neutral currents
[20,21] . Parity violating meson-nucleon interactions provide
with the unique possibility of studying all the components of
the standard model at low energies (in nuclear reactions).

We stick to the usual (at our definition of the pion fi-
&ld*) parametrization of this vertex:

<IN 1N = G 2 Ay o Uplhn (1)

Experimental bounds on A'K taking into account theoretical
uncertainties while extracting this value from experiment are

(8] ( see also re. (1]
15<AL25 (2)

As for the theoretical estimates of AT[ s up to now they have
been done in various quark models and are scattered in a rather

*) ghe pion residue <"it'la.(x)¥5u(x) [0> =i *3‘[ I"I‘I.?'“'
Myt mdj"gﬁ.]t (X) where ¢1‘l’ (X) is the pion wavefunction.
Then if L~ THX)OD>=PByr(X) then THX) =

field.



large intervsal, 'ATF. ™~ 0.5 + 5 (gee refs. [13.14.,18-22]}. The
origins of this discrepancy are 1) dependence of the result on
g choice af normaelization point of the effective weak Hamilto-
nian H‘::: , 2) dependence on a model used and 3) dependence on

the constante characterizing this model, say on quark masses in

the MIT vag.

The following calculation allows one to overcome these
difficulties to a considerable extent and, within the accuracy
expected, results in agreement with the upper limit for A-n in
(2).

2. The method

Using PCAC in the soft piom limit leads to

(E"P\Hﬁln) =;—I<PIHL’\n> (3)

where
W=y, {Woorgdondsx] e
Then
Ag= e
X Gpm.*itfl (5)

where <PIHIWITL> =&XWUpWpy . mhe value of & is ob-
tainable from QCD sum rules. Acting in the same way as at the
derivation of QCD sum rules in the constant external fields
[9-11] we would consider the T-product of proton W, and neu-
tron Tl' currents and Wilson operator expansion for it in the
presence af weak interaction; the latter being effectively,
described here by the Hemiltonian Hy, (see (4)):

K(q) = tdee <OIT{N W@ HOD =
_2(c“ﬁ+Dn)<OIO 10>

Here On are local operators, and coefficients C'n ’ :Dn_ at
the two independent x -matrix structures ; 1 are power

4

functions of & = -qE. One can speak sbout the correlator pleced
in an external charged scalar field coupled to wa . :
Complication arising in our case is connected with occu-
rence of the single pole subtraction terms needed to regularize
WA4 divergences in the correlator (6) (see, e.g., Fig. 1),
They correspond to the case when only one of the currents crea-
tes from vacuum or annihilates real hadronic states. 5o they
are not relevant to the problem under consideration. To get
rid of these terms one must place the correlator into the vari-
able external field allowing one to make distinction between
momentum variebles of initial and final baryons. In the first
order in the weak interaction we arrive at the correlator

K(4,,32) =_(clxclg| exp(ig,Y—iqx)-
<o|T{np(g)H (0) N (x)}[0>

The matrix element calculated becomes a function of k
k = Qy = Qoe This circumstance is not essential for us as soon
as we put kE = O,

(7)

Let us expand K(qhq:}_) in the four independent K -

-matrix structures
A A~ A
To=ﬂ1‘4z.,T,= mqu ) Ta=— a,ﬂz 1= (@)

in the following way:

K(clqul‘) GFY_

@ )10 Z R (5,,8)T; (9

Then the Laplace trmfcmation L L?_ of h (31151) in the

e e 1
two variables 51— q1 ) Sﬂ.= ZE*Iﬁiflrﬂérf:E in ref, [6]}
ds,

hi(t”tz)s L«‘-zki(%sz) =

E-ien

z'm'h S zuit-l' {10}

S S
-exP(ﬁ' + Ttl)' ki (S‘}S,_.)J Eb"OJ

turns out to be adequate to the problem, simce it cancels sing-
le pole terms. Contour integratiea (10) esm be performed with
the help of the double dispersion relation for Er (.S.I,Sz)




T T pcuiupdu,d |

R.(S4,Sy) = S S Pl Ua) AUy AUy |

Then e ‘l G,M }

LA |

Uy U \auU |

(At = My W) eXpl~ 5 — 5= ) =— 2 2(12) |
kt( - é é?: 2 P( € t,_) : o 3

Phenomenological expressions for h'l follow from saturation

of K(qhqg_'] by physical hadronic states: 4

ad 1 1 higher

K@) =i Cle) g~ o5 states

where M , are the nucleon mass and residue, respectively,
<oINyIND> = (Zﬁ)-lﬁ XB Wy __ » baryon spinors W oy be-
ing normelized in a usual way, uNU.N= 2M . Transforma-
tion L,‘Lz(m},{m) improves convergence of OPE series and
cancels single pole subtraction terms in (13). Besides, it
suppresses the higher states contribution in (13). Therefore
let us omit this contribution at the first atep. Congider, for
example, the structure [4= (ﬁ{"'ﬂz)/z.. Equating both the
phenomenological and theoretical expresgions for K4 yields
with taking into account (5),(9),(13) the amplitude A~y of
interest

i
AT = G4VZ mip b MEA T2
_t__: titl
bty |
The higher states contribution is accounted for in a model 4
way as continuum. Transferring the sum over higher states from
the 1HS (phenomenological part) to the RHS (theoretical part)
of the sum rules is suggested to be equivalent to limitation of .-
integration in spectral representation (11),(12) in the RHS by

gome region . We adopt the following two models for H
the square

Q={u,u)|0< Uy < Sek (15)

or the triangle

i
titaR (4t 02p )
(14)

Varying Sa we aim at the existence of a piatou in the depen=-
dence of Ay ant=t4/2='t2/2,. The difference in the results of
such the fitting procedure for the two choices ot 2 15,
(16), turns out to be small, 2 1 ¢ 2%. Por definiteness, we
shall work further with the variant (15) for $2 .

We can unambiguously determine the contribution to h;(‘tqltg)
of the disgrams like those depicted in Pigs. 1a,2 responsible
for the weak interaction at short distances. These diagrams
are given by explicit formulas as functions of Sy , Sg . At the
game time effects connected with the weak interaction at large
distences (see Figs. 3,4) are included into a definition of the
vacuum expectation values (VEV's) of the operators in a weak
field ("weak condensates").

" We are able 1o calculate these weak condensates only when
kK =0 and 8, = 8pe We can also compute a few terms in the ex-
pansion of the corresponding part of correlator in the (s, - 2)
series around the point s, = 8,. It is not gufficient to per-
form II'...[I.E gince the double spectral density P(S.“Sz) must be
imown for that. However, it is sufficient to perform the ordi-

~nary Laplace transformation Lt (in the varisble s = 8, = 9,

end with a parameter t)., This transformation had been success-
fully applied to calculation of the baryonic couplings to the
two-quark external fields [9-—11] characterized by the absence
of strong UV divergences like those considered above.

Thus, weak interactions at different distances, namely, at
short and at large ones require different techniques, namely
the double and the ordinary Laplace transformations, respecti-
vely, for analysis of the corresponding contributions into the
physical amplitude of interest. It is desirable, from the for-
mal viewpoint, to reproduce the corresponding results in the
fremework of a single methodiec, namely, using the double Lapla-
ce transformation. With this end in view consider the genersl
form of the double spectral density P(S4,S,) relevent to
the effects of weak condensate.

First, a connection between f? (51151) and a model used
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for the continuum should be noted. Confining ourselves by the
region 8, = 8, We loge a considerable part of information on
the continuum contribution. The latter was earlier attributed
to the complement of in the quadrant s, 3» 0, s, > 0. In
case of the two-quark external fields [9.111 an acceptable mo-
del for continuum is that resulting in the following sum rules:

a3t = (exp T)2 Ot En e 22 i

where

x

A n-1 -4

(= S‘.‘*‘ = dﬂ’ v
(o]

o (18)

Here A is the constant to be determined, B and S, parameirize
gingle polea in the 1LHS end continuum contributlion, respective-
ly« In particular case,ef vector field the coefficients Gn in
(17) were jShowm in ref. [1 1] to reproduce those in the expan-
gion for _ﬁ ; therefore the specific form of dependence ans;ax-
hibited by (17) is the only one required to ensure nonrenorma-
lizability of vector constant A = gV =1 « The same form
of dependence on Sa leads to consistency with experiment in
cases of external axial [11] and electromagnetic [9] tields.

In particular, calculation with the power corrections suppres-
sed results in the neutron and proton magnetic moments being
¢qual to (- -3-) and (+ %}, respectively; taking into apcount
these corrections yields an agreement within 10% with experi-
ment [91- Purther, a connection between (17) and ?(U«b I.alz) is
as follows

zth"‘t EH(T =

exp(-52) —exp(- 3 i
-.-._ég(m,uz) P(u:;)u,_ ( t)du;"iuz{ 9)

where the region 52 depends on Sﬂ as on a parametew. The

-4

RHS of (19) does not contain any subtraction terms. Really,
the only necessary subtraction in the diagrams of interest 1li-
ke those of Fig. 3 is that which must be done in the loop I,
and corresponding subtraction term is cancelled by Lt; the
shaded blob does not add any new divergences since it survi-
vea, by definition, only at small P} ; % and at P.|=P=_=0
it comes to the finite matrix element of a definite local ope-
rator in external field. It is posasible to show that (19) imp-
lies the following general form of P(Susz) :

?(51151) = {(S;‘>8(5{"'Sg_) (20)

With this condition the double Laplace transformation is redu-
ced to the ordinary one in S = S, = SZ

1= titl/(ti“'tg_) .

Our choice (20) for general form of 9(51152) relevent
to weak condensates is supported, firstly, by an analogy with
the two-quark external fields. Secondly, such the form of e
appears at explicit calculation of graphs of Fig. 2 containing
the weak vertex at short distances. While lowering virtualities
of the weakly interacting quarks the graphs of such the kind
turn into those of interest of Fig. 3 relevant to the wesk con-

with the parameter

' densates. Pinally, thirdly, ansatz (20) seems quite reasonable

from physical point of view: once interaction is soft, it can

not appreciably change the invariant mass squared 9, of inco-

ming three-quark state. This circumstance is just reflected by
-function in (20).

3. Derivation of the sum rules

The sum rules are derived for the structure T1 -

= (A;‘ +41')/2_ y Since it is nonsingular at 9y = q, (which is
important for the analysis of the weak condensate effects) and,

in addition, resulting sum ryles are comparatively low sensiti-
ve to the continuum contribution.

The nucleon currents take the form

TlP = (u'C rr*“b) yHd° Eabe




Yl.h.:"(aq.c XPAP) X'Aucsqbc‘c -_-.rur'z (21)

PH"(Q
The structure of the effective Hamiltonian HW q)
is determined by a typical quark momentum Qq. The latter squa-
red, Qg, is substituted by IEE, some scale of order of 1.:1,.1.:E
once Laplace transformation is applied to the correlator. An
expression for the interesting for us ﬂs = 0 Hamiltonian
Hg(ﬁ) at M?; mc is found in ref. [12] (the general
case ML mn is considered in refs. L13-15']). As it is easy
to check, transition NP P'lt is contributed only by AT = 1,
flavour octet part of H :
PV om.) T d
Mw e = s (35 Kw OF +§ K 'Of)+
& w { w i
GeVZ  ©\20 9

dgq s {  daopnA
+(1-25%) 35Kz 0& + ,—l-l:;"a )+ 22
+(-1s) 04,0001 K0
where S:= S'll'tet ) SW= sin GW

The matrices R{proportional to the anomalous dimension mat-
rices of operators Ol) take the form

ey s =+ &
dgq=3 > dao=+ 26
-2 2 -3 81
g 4 3 2
d _-_[_- E "2. 2 2 (23)
B-d5 L & uw.0.0
3 a1 s -2
ol R T T 8
The operators ((O*S ; @15 and a column @1) are defined in

the following way:

or|=|-4 1 - 1] Y%

10

0A31) |
@8=L @ﬁ(;\&n
12 @(4|A3)

L_@c('ij"\?a)-
@m,m=(¢xﬁxsm~v)(¢x'f_tW) ;
0N =T R IMYN T YENY)

n n

A (2.1'. ) are the Gell-Menn matrices in S{J (3), (SUGY.
The quark field \P carries the flavour {O‘.,ﬁ & 3 eee = 1,2,3),
colour (a,b,Cpsee = 1,2,3) and biaspinor (i,kyl,ee« =_1,2,3,4)

: Q dn a
indices. q means a definite (light) flavou:r,ui » At r.':-rSi .
Expressions likeqjt imply the summation over all the indices,
while those like lﬁ'\v do nat, i.e.

TW—=TT2 W - _wa Tgb
We have analysed contribution of operators with dimensions
d.ﬁ.'_. & in the operator expansion. Consider first the graphs

like those of Figs. 1a,d containing the weak vertex at short
distances. It turns out that these graphs do not vanish only

—

where

(25)

~ due to operators from HI:'; representable as the products of

right- and left-handed currents. Let us note just here that
their contribution into the whole amplitude is small, of order
of 1%. Therefore we have taken into account only contributions
of operators 1 (asymptotic loop of Fig. 1a) and YYYVY

(Figa. 14, 2b). The latter can be, generally speaking, asnomalo-
ugly large due to the loss of loop smallness, but in case of
the trmitiqn'n—hp it equals to mero identically.

The dominant contribution comes from the wesk interaction
at large distances. Corresponding graphs are shown in Fig. 3
ar’dd have only two valence quarks weakly interacting at large
distances, Centribution of the configurations with four valence
quarks weakly interacting at large distance 2L (see Fig. 4) is
suppressed by an additional fermion propagatora. As a result,
the graphs of such the topology are essential in higher orders
of operator expansion, namely, in orders corresponding to 6

1



units larger operator dimensions than in the two=-quark case.
Therefore we disregard these graphs.

We have analysed the following VEV'= in the charged weak
field (in notations of (26)):

<>, <9y ud> (KRuded),
{udqe> = <ud> <> (21)
LUTQIE> & <udad><qg> + <ud><qga)

the two latter being estimated using the factorization hypothe-
8is. Let us put for estimate

KT t"igg Gl w> = m2<du> aa)
where ml.n is the same as in the definition
<o t"i9sGq> = m2 <qad> (29)

Of course, this estimate is rather rough. It turns, however,
that the corresponding gontribution into the sum rules (due to
the first term in W qﬁ'G-} (27)) is about 10+15% to the
main term. Consequently, the roughness of the estimate (28) can
not essentially tell on the accuracy of the final result. By
means of the equations of motion

‘ 3Hw,
L)?q =Mq % _gﬁ_'_ (30)

the considered weak condensates can be differentiated in Gp and
reduced to the pure QCD VEV's, for example: I

) g oHw _ dHw i

<u‘}‘ > = =—=K0| - W 3d [0>':3”
m;—my

The RHS of (31) is the VEV of some four-quark operator normali-
zed at M 2 M . Expressing this VEV through those normalized
at M <M with the help of renormalization group (RG) we
explieitly take into account perturbative contribution of the
fields of virtually P from the region HQP{.mc « Virtua-

=+

lities below t‘ are included into a definition of the matrix

element itself. The lstter is calculated by vacuum insertion at
low M . Putting oCS(H) =1 yields W =0.206eVat A =

12

= 0,1 GeV. We have checked stability of the results with res-
pect to the choice of fA . Enhancing rL from 0.2 to 0.5 GeV
leads to lowering ATE by no more than 5%. Such the stability
is explained by mutual compensation of the following two effects
caused by enhancing rk « The first effeect consists in dimini-
gshing factors accounting for the renormalization from m: to IL
of the considered pure QCD VEV's., The second one is enhancing
the normalized at M\ querk condensates £ qq7» appearing while
these pure QCD VEV's are factorized. To make use of the RG in
the region WX P< M with more confidence the larger M,
\-L = 0.5 GeV, is chosen.

For the sske of simplicity we present here the results of
calculation of h{ (t‘t]tl) without teking into account dres-
ging with gluons in the whole region t-L ‘CP < mWZ.:
¥4 st [g._ tita 4__6_a‘2.t7.(4_1__lﬁi_’ .

3 WISt+t, 3 e 3t o
64 Q?'t(.i_..‘.l... m%)] 3 t= ta
*3 A $% L+t
where a= -(Z.Tl')z(q °‘> ’

| < @u-aEdy> e

A7 LTu>my-m,)

The first term in square brackets in (32) is given by amsympto-
tic loop of Fig. 1a. The second one is the contribution of the
woek condensate& <VP,U¢ > end <Vt,lu &,

CVuVLVaud > (see Pigs. 3a-c) and the third one is that
ot (udkqy> ana <UAQYGED> <V y,udqT> |
<uanV..qﬁ> (Pigs. 3d-h). The complete form of the
sum rules taking into eccount the gluonic corrections is given
in Appendix.

4. Numericel analysis of the sum rules

In what follows the knowledge of [\ (see (33)) is impor-
tent. In refs. [_16,1?'] some estimates of <('ti'.u—-3.'d1>
consistent with each other had been obtained by different me-
thods. In particular, the result of ref. [16] provides an ele-
gant formuls

13



+m
n

at m“'l' m&_ = 11 MeV. Calculation using this estimate re-
sults in that the main contribution into the sum rules comes
from the operator Wi C‘ET + The largeness of this correction
does not violate, however, an applicability of the operator
expangion. Really, the given correction is singled out both
for geometrical reasonas (it is determined by Born graph of
Pig. 24, not by loop one) and for accidental reasons for it is
sensitive to f& . This anomaly is not iterated in the next
orders of operator expansion: as it is seen from (32), the sub-
sequent (quark-gluon) corrections are comparatively small, as
usually, '

We adopt the following values for the rest of pB.I'EI.mEt‘EI'E*:
.=0.249 , s? =0.23, m,,,=80GeV
- i r Bl G W

(35)
a=0.546GeV3 A=0.1GeY, m%=1GeV?

The nucleon residue is determined from QCD sum rules ob-
tained in refs. [3.4]“:

_$1= 4.0GeVS® (36)

iz 2%
The dependence of A-“ ont= /;1— 2/;1 is ghown in
Pig. 5 for the three values of the continuum threshold Su .

* fThe normelization point of the presented VEV's corresponds

here to ﬁs m 0.7

** mme quantity 0.25 Gev® for ﬁ"" we use in this paper is
alightly smaller than the number 0.30 Ge\'ﬁ cbtained in refs,
[3,4'] (with taking into account some corrections, see ref.[11])
Thia difference is connected with that we issue averywhere from
the experimental nucleon mass whereas in refi:l (3,4] 1t 1s
extracted from QCD sum rules parallel with 9 and turna out

to exceed it's experimental value.
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Analysis of the sum rules is performed in the region

0u5: ot it GeV?: on the one hand, sum rules are the
most sensitive to the lowest resonance contribution just at

t & m‘!. ~ 1 Ge?z, on the other hand, the nearest power
correction to the main term is sufficiently small and is 25%
at t = 1 Ge‘H’E and 15% at T = 1.5 GeV®, We have found that
A'Il' is practically conatant at 'Su = 1,5 Ge‘&'z, 1,08 < 15
i}e"fe and equals to

Py ™ 2.4 (37)

(at M = 0.5 GeV; at M = 0.2 GeV Aq= 2.8). This resut is
consistent with the experimental bounds (2) for A-Itwithin
the accuracy expected. The latter seems to be about 25% if one
takes his cue from the ratio of the nearest power correction
to the main term or from the continuum contribution to this

term (being equal to 20+440% at ‘t = 1¢1,.5 Ga?z. respectively).

Finally, the sum rules demonstrate the dominant role of
neutral currents and importance of perturbative gluonic correc-
tions in A-n-(see refs. [13.14.20.21]}- Por example, the con-
tribution of charged currents in A'n- is only about 1%. Dis-
regarding perturbative dressing with gluons in the whole range

t& o P < mW,'Z. yields vt

instead of (37). Accounting for the renormalizations of only
H':f or only in matrix elements of the type of (31) leads to

A“(mr_{P‘( meE) = 4.¥
Ag (M <p<Mc) =42

regpectively.

(39)

(40)

5. Conclusion

Thus, the QCD sum rules method allows one to overcome to
g congiderable extent the difficulties listed in introduction
inherent in the previous methods of calculation of parity none
conserving JU NN vertex and results in an agreement with expe-
riment in the framework of the standard model.

15



In conclusion, the author is indebted to I.B.Khriplovich
who has drawn my attention to the problem involved, for consi-
deration of the work; to V.L.Chernyak, A.I.Vainshtein and

AeR.Zhitnitsky for helpful discussions and reading the manusc-
ript.
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Appendix

The general form of the function t{tzhi entering the

sum rule (14) for AT( with taking into account dressing
with gluons is as follows:

" 0.48
t ke 82 (KOHA L LK O¥) ¢ ii-asy (KZ A+

A ,~0.24 2 d
+ g Kz B) b s 3 3;[{,0,0,0] Kzis.

3.3 |4 Y
st || L 46 8242y (1)
'{'LMf_ ‘}.l+SLH k

O : 32 43 Jfg‘ E;)
5 %;El.rd cfl'Tft;t:[ji;l + iii? Q Ei't:[){jf(ﬁ-1p1 lit

where the scalars A,B and vector columns X ,", are
-"‘/3 3
A= % b ot [ll-i’-{’ 11 X +% lf:? :— t[100,01Y
=8

P 4 +8 a3t[0,1,0,0]
sOwatt (111X + 52 LG i Y

-

dg[3 EAK 0
X=3D,K 1‘35]+‘ K*8|3],Y= Kd1[°

b 3|21~ 16
10 b z

The anomalous dimension matrices b&l are introduced in
eccordance with (23) and with

K -0t . TR -é-g"!
({85 0. = : s !i-%!-ﬁu
AS:E 2 Ulh,a=g1e » (34)
T Mgt g .2 ¢ “.}

o -3X-"2 3 S
g ol &0

17




The matrices D{ ’ Dz are

[P R PRy oot b
2 3 3 {6
it 31 4% o] 2ot B
D= y D=8 3 3 33
i 4 0 -2 " 1-Z o A
2 3 2 16
S 1% B bk ¥
| l-.a 33 484
Finally,
> *s(m) ’s(R) _%s()

! 3
‘Nﬁiﬁ c*%;(rrlﬂﬂji)

—— — ————
& dul

18

(44)

g

Te

2.

3.
e

De
E-
Te

B.

9.

10.
11.

12.
13.

14,
15.

?6'

17

18.
19.

References

M.A.Shifmen, A.I.Vaeinshtein and V.I.Zakharov, Nucl. Phys.
B147(1979)385, 448.

L.J«Reinders, H.R.Rubinshtein and S.Yazaki, Nuel. Fhys.
B19€(1982)125.

B.L.Ioffe, Nucl. Phys. B188(1981)317; (E) B191(1981)591.

V.M.Belyaev and B.L.Ioffe, ZhETF 83(1982)876; ZhETF 84(1983)
1236.

Chung et Elc.. Nucl. Ph,‘fs. 3197{1931}55-
B.L.Ioffe and A.V.Smilga, Phys. Lett. 114B(1982)353.

V.A.Nesterenko and A.V.Radyushkin, Phys. Lett. 115B(1982)
410,

?.L.ElEtﬂk,‘f, B.L.Ioffe and YE..I.KDEBH. Phys. Lett. 122B
(1983)423.

B.L.Ioffe and A.V.Smilga, Pis'ma ZhETP 37(1983)250;
Phys. Lett. 133B(1983)436.

I.I.Belitsky end A.V.Yung, Phys. Lett. 129B(1983)388.

V.M.Belyaev and Ya.I.Kogan, Pis'ma v ZhETF 37(1983)611;
Phys. Lett. 136B(1984)273.

G.Altarelli et al., Nucl. Phys. B88(1975)215.

B.Guberina, D.Tadic and J.Trampetic, Nuecl. Phys. B152(1979)
429,

F.Buc&lla et El!.- Muel. Ph,?ﬂ. B152{1979)461l

V.M.Dubovik, V.S.Zamiralov and S.V.Zenkin, Nucl. Phys.
B182(1981)52.

V.L.Chernyak end A.R.Zhitnitsky, Preprint INP 83-106,
Novosibirsk 1983.

P.Pascual and R.Tarrach, Preprint UBFT-EP 5-82, Barselona
1982.

B.Desplanques, Nucl. Phys. A335(1980)147. _
B.Desplanques, J.F.Donoghue and B.R.Hnlstein,.knn. Phys.
124(1980) 449.

519'




20,

21,

22.

J+G.Korner, G.Kramer and J.Willrodt, Phys. Lett. B1B
(1979)365.

V.M.Dubovik and S.V.Zenkin, Preprint JINR, E2-83-611,
Dubnea 1983,

H.Galic, B.Guberina and D.Tadic, Fortschr. Phys.
29(1981)261.

20

HE-

Pig.

PFig.

Pig.

Fig.

1.

2e

3e

4.

5a

Figure captions

The diagrams (a) and (d) are responsible for weak
interaction of the four valence quarks at short dis-
tances; the graphs (b,c) and (e), respectively, cor-
regpond to the subtraction terms to these diagrams.

The diagrams relevant to weak interaction of the two
valence quarks at short distances.

The graphs accounting for weak interaction of the
two valence quarks at large distances. The shaded
blob stands for interaction of the soft fields with
nn external (herewith a weak) field.

The diagram relevant to weak interaction of the four
val:nce quarks at large distances.

FRI{ versus ‘t for three choices of the continuum
threshold Sgq .
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