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Abgtract

Using a simple example we show that the distribution for
the energy levels of integrable aystems is not the uncorrelated
Poisson as is commonly believed. In particular, the spectrum was
found to be rather rigid. We conjecture that these are typical
properties of the integrable quantum systems.

Energy level statistics is an important property of many
physical systems such as complex atoms and molecules, heavy nu-
clei etc. This problem has attracted recently much attention
(see e.g. (1-18) among physicists, chemists and mathematicians.
In particular the level statistics provides an indication of
the type of motion of a quantum system. It is commonly believed
that the "level repulsion”, i.e. the Wigner statistics for level
spacings, 1s related to the nonintegrable, chaotic motion, whi-
le the lack of repulsion, i.e. the Poisson statisticas, corres-
ponds to integrable motion. Actually, this is no absolute rule;
indeed, the energy level repulsion in nonintegrable systemas, as
confirmed by several numerical computations, is due to some re-
al interaction among the unperturbed states that leads tc'a for-
mation of eigenstates which are superposition of many unpertur-
bed states. However, a repulsion which may be said to have a-
kinematical rather than dynamical origin may take place in in-
tegrable systems. The aimpleat example of such a kinematical re-
pulgion ig given by the one-degree-of-freedom congwrvative system.
From the viewpoint of level statistics one could say that there
ig a strong repulsion in this case since the spacings are egqual
to the frequency of the classical motion which is typically
different from zero. A more interesting example of kinematical
(2) in a two-degrees-

repulsion has been given by Berry and Tabor
-of-freedom harmonic ocscillator.

The distinction between integrable and non-integrable sys-
téms becomes much less clear when higher-order statistics, i.e.
correlations between many levels, are tsken into account. In
the search for distinctive properties, spectral sequences of
gimple model systems have been subiected to various statistical
tests. For example, Bohigas et al. 16) were able to establish a
definite similarity of fluctuation properties between the spec-
tral sequence of Sinai's billiard and strings of eigenvalues of
random matrices in the Gaussian Urthcgoﬁal Ensemblie.

In this letter we communicate the fesults obtained by ata-
tistical processing a string of 105 eigenvalues of the rectan-
gular incommensurate billiard, calculated by reordering the dou-

ble sequence
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with of an irrational number.

In a previous paper{11), we digcuassed the algorithmic pro-
perties of the same sequence, and we showed that it is not a
truly random one. Being not based on specific tests, our argu-
ment may leave some doubt that, nevertheless, the sequence may
appear "random" to empirical tests. Thus, we have performed the
following teats.

1) The distribution of the level spacings. This is shown
in Pig. 1 and it looks fairly close to the Polason distribution.
Nevertheless, for small gpacings we found statistically reliable
devintions from Poisscn's uncorrelated statistiecs. In fact, for
the first interval in Fig. 7 the deviation of the number of spa-
¢cings from the expected value iz approximately 17 times larger
than the stendard deviation.

The distribution inside this interval is also shown in
Fige 1. Again the first interval of the latter distribution
showg the biggesi flucituation with the actual number of spacings
now larger then expected, approximately 18 times the standard
deviation.

The _,'?’,'zvalua for all the 10 sub-intervals is approximate-
1y 626 and even if we exclude the firat sub-interval it is still
297 whizh corresponds to negligible confidence level. Apart from
the whole interval (0,0.1) the agreement with Poisson's law
seems to be rather good judging by Fig. 1. However, the calcula=-
ted szvalue for 21 intervels is again too large: 69.8, corres-
ponding to a confidence level -~V 10'7. This is another indica-
tion that the sequence is not completely random: in fact, it ex-

ipits too large fluctuations® for a random gequence which are
expecially clear in the distribution of deviations from the Po-
igson law (Fig. 2). Not only there are substantial distortions
of the Gaussian shape but what is more important the width of
the distribution is about 3.3 times larger than the expected
one. This implies that the whole distribution is definitely dif-
ferent from uncorrelated Pcisson astetistics. In terms of ;E test
the value about 10t wag obtained for 900 intervals which corres-
pond to a completely negligible confidence level.

*

A similar observation was made in Ref. (17).

2) The P 3 atatistics of Dyson and Mehta{19} which cha- ;
racterizes long-term correlations between levels, or the so cal- !
led "rigidity™ of the spectrum. Specifically, for a given num-
ber L of levels we computed an average E;B(L} in two different
ways:

e) by averaging ;33(EE,L}, computed along a segment of L
levels starting from level E+ over a string Enﬁg E=E
("spectral average") with oL=T7/3; g >

b) by averaging 553 over a number of different values of
ol chosen at random in a given interval (“"ensemble average").

———

The results so obtained for 59 3(LJ are plotted in Pig. 3.
The straight line in this figure ﬂj = L/15 correasponds to the
behaviour of JEE(L) for the uncorrelated Poisson statistics of
the level spacings. For small I, 153{L} is close to this line,
but then s kind of saturation occurs. Henceforth, Ef (L) beco-
mes a very slowly increasing function, such as one wnald expect
fdr a rather regular sequence. On the other hand, if one looks
at the set of eigenstates on the (n,m) plane which form s per=-
factly regular lattice (Fig. 5) one is 1led, indeed, to expect

.ﬂj{L] A const or, at most, a very slowly increasing function.

- The apparent controversy in these results can be explained
ag follows.

S ZDTEE:EE :-:-igg)E,!fn:ifsndinside which there are L levels,
T 5 oy ary layerg of width € along

each of the two borders of the ring (Fig. 5). Due to incommen-
surability of curve E = const and the integer lattice the num-
ber of levels in the layer fluctuates. Actually, provided £ is
small (E<<{), we mey assume that those levels come roughly as
if at random. Hence, ﬁg{E,L} computed over a string of I such
levels, starting from level E, would behave as L/15.

On the other hand, due to the regularity of the lattice,
weé can not expect the same for too long strings. In the latter
case ﬁB(L) will be app 'oximately 1/15 of the "effective nonri-
gid length" of the string. corresponding to some critical value
of £=§ .4 which can be determined by numerical experiments.
The total number of those "random" levels lying within the two

boundary layers near E1 and EE is approximately %Ec r[ E,+ V/E; J
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for oL 1, 8o that we expect
25(E L)~ %EEF[U?+./E+L%] tor [ 22% [E (2

Instead, if.ﬁﬂ}“‘gw@, we expect 43(&3.{.):55/4’5:

By averaging these expressions of 113 in the two ways
a) and b) described sbove, we obtain analitycal estimates to
be compared with the numerical data in Fig. 3 and 4. In parti-
cular, from the date in Fig. 3 we obtain £, = 0.40+0.42.

For an accurate check of the square root dependence on L
it is convenient to take E = 0 in Eq. (2), and compute the en-
semble average which gives

EcTTL

Pig. 4 shows ;1_3{1.) averaged over 20 values of o within the
interval (0.9, 1.2). It is seen that the square-root dependen-
ce 1s verified with & quite good accuracy. Moreover, fitting
Bq. (3) to numerical results gives € _ = 0.53 which is close
to the value obtained from gpectral averaging over different
segments of levels with the same o .

(3)

In conclusion it appears that, at least for the integrable
systems discussed here, the level sequence is overall rather
rigid but behaves as a random one over small energy intervals.
In particular, the latter explains the irreguler behaviour of
spacings leading roughly to the Poisson distribution.

The argument presented here for the two-dimensional case
may be eagily generslized to N dimensions and gives

ey /2
W TN,
P W e : L%Nn'/.z (4)
: /15 ', LEN

14
2
aasumingﬂ-zdgm‘;; o, = { ana N>,

Even though the derived expressions for the level statis-
tics are related to the particular model (1) we conjecture
that the qualitetive structure of the spectrum would be the
same for & typical integrable many-dimensional system. Thie

view is supported, particularly, by the }esults of Ref.(17) whe-
re a similar behaviour hes been observed in a different mo-
del.
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Figure captions

Level spacing distributien obtained from the firast
100,000 levels (1) with ¢ = J-/3, The dotted line is
the Poisson distribution P{s) = e~ 5,

Histag:;%m ozxthe distribution for deviations

H& _— }I, i Ob
m;, = 7*-_';_2_.?_1_ of the observed number of spacings ng

‘from the expected n®* in the i-th interval. The inter-
vals are so chosen that n®* = 90 for each. The full
line shows the Gaussian distribution of width 6 = 1
corresponding to the uncorrelated Poisson statistics:
the actual observed r.m.s. width & = 3,3 (dashed
line).

The ﬂj - statistics computed for model (1): spectral

average A 3 over the first 2,850 (+) eand over
10,000(¢) levels with the seme o =7/3; ensemble
average A 3 over several values of of for
10,000 £ + L € 11,000 (°) and 20,000 TR + L =
=< 21,000 (A ). The straight line: ‘ﬂj = L/15.

Graph of ensemble average A 3l{L} for L < 1,000 sho-

wing the square-root dependence on L, « =¢ 1. The

straight line fits Eq. (3) to the numerical data with
3 or = 0.53.

The set of eigenstates for model (1).
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