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Ab atract

We numerically study the excitation mechanism of the
hydrogen atom in a microwave field and show that quantum mecha-
nica imposes limitations to the classical chaotic motion. Besi-
des, a multiphoton resonance pattern has been found. We suggest
that a direet laboratory experimental verification of these

* phenomena should be possible.
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To explain the results of experiments(1’2) on ionization
of highly-excited hydrogen atoms by a microwave monochrometic
field, & new mechaniam of ionization has been suggaatedca). na-
mely, a quantum diffusion of the electron over the unperturbed
excited states. Since in actual experiments only initial states
corregponding to high values of the principal gquantum number
(n = 45-66) were examined, a classical description of the prob-
lem was given{4) and the numerical results obtained were in sa-
tisfactory agreement with experiments in Ref. (1). In Ref. (5)
the essential role of classical chaotic motion was stressed and
the condition for the onset of diffusive behavior has been de-
rived. However, the numerical experiments with simple quantum
modelsté'gjha.ﬁ shown that the quantum effects lead to the limita-
tion of clagsgical chaotic excitation. Also, computer simulati-
onsg of the electron excitation from extended states, i.e. ata=
tes with parabolic quantum numbers n13? n, ~ 1 (or n, << ng},
have revealed that diffusion over levels is much slower in the
quantum case than in the cl&ssical(10). Moreover, besides the
diffusion, multiphoton resonances with the number of photons
k ~ 10 were found to play a significant role in the excitation,

This paper is devoted to a numericael study of the dynamics
of the hydrogen atom excitation from states with n1bb Oy ~ 1
and m = 0. As these states are very extended along the field
direction we meke use of the one-dimensional model developed
and described in detail in Ref. (10). The Hamilton operator of
the model is®’
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where £ , « are the field strength and frequency in atomic
units. In our computations we used initial conditions corres-
ponding to & single excited unperturbed level with n = 45, 56
or 66. The total number of levels taken into account was about
200 in & typical range 20 < n < 226.

The accuracy of the numerical results was checked by vary-
ing the total numbeys of levels. For comparison we integrated
the claseical equations of motion for 250 trajectories with
*] In the classical 1imit this model was first censidersd by

R.V.Jengsen Ref. (11,12) for the description of a different
physical system, the so-called surface-state electrons.




the same initial value of the action n  and phases homogeneo~
usly distributed over the interval [0,27%]. The main computati-
ans have been carried out on a CRAY-13 computer.

The quantum limitation on chaotic excitation was one of
the most interesting phenomena observed in our numerical expe-
riments. Congider, for example, a typical case with n, = 66,
E-JD =an = 1,2 and E.G = £ n = 0,03, Here, in the clagsi-
agl limit, the resonance overlap condition is fulfilled which
leads to a diffusive excitation of the electrcntj}i. In order
to investigate the extent to which diffusion also occurs in
the quantum case we considered the second moment Pﬂz
= <“"—-<*"—‘>ﬁ”n“, =A njﬁ/niof the distribution function fn
over the energy levels., We found that in the quantum case the
dependence of ME on the time is qualitatively different from
that in the classical limit. Indeed, the quantum moment ME re-
mains close to the classical one during a few periods of the
field only, and then it oscillates about a stationary value
whereas the classical moment continues to grow rapidly (Fig. 1).
This confirms the previous results of Ref. (10). Increasing
the peak value of the field to & = 0.04 leads to a sharp ri-
ge in the quantum moment M, which continues during the whole
computation time. However, the growth rate is definitely smal-
ler than in the classical case (Pig. 1). Similar phenomena we-
re also observed for different velues of the parameters, for
example, at (,¥1; n = 66, £ = 0.03-0.04 and n, = 45, & =
= 0.04-0.05.

To get some insight into the nature and mechaniem of the
gharp increase in M, with g | (Fig. 1) we turned to the dist-
ribution function £ ( 2 ) where ¥=wt/p. An example of f ave-
raged (to suppress the fluctuetions) over the 40 values in the
interval 80< T < 120 for the case E o = 0.03 of Fig. 1 is
shown in Pig. 2. Most of the probability is concentrated within
a peak whose maximum remains at the initial level n = n  in
all cases. Even though the moment ME keeps growing, the width
of the peak increases only up to a stationary value. Such a be-
‘havior corresponds to the so-called quantum localization in a
classicaly chantlc system which was studied in the simple ro-
tator mndali -9,14) and then confirmed in other models 15,16)

as well. The peak shape can be approximately described by the

simple exponential dependence

fm o exp(—

21ln-n,l

; ) (2)

in agreement with the results obtained for the rotator mo-
del{g 1T}. The order of magnitude of the localization length.e
can be egtimated by the simple method described in Section 3.4
of Ref. (7) which gives

E::aa])g:atﬂ{f\’fﬂ”-}'e)ﬂpdﬂz £ (3)

Az
The factor of is close to one according to numerical data on
the rotator model (see'?s17) 5 &

Eq. (3) holds for homogeneous diffusion only (D, = const).
However the diffusion coefficient for the model (1) in the qua~

gilineer approximation depends on n{13}
2 3
s e R
D, = (4)
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(This expression has also been 'verified in Ref., 12). Neverthe-
legs for sufficiently small £, , { is also small and n=~n
g0 Eqe (3) still holds. Yet, for large £ ot D grows rapidly 4
which leads to delocalization, and to unlimited diffusion with
a rate close to the classical one. This phennmenon was invesg-
tigated and explained for a gimple modeltT)

The analytical expression for the dependence of localiza-

~%ion length on the parameters can be derived alsoc in the pre-

sent case and has the following form (the related theory will
be published elsewhere):
"3
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where u is smaller of the two sclutions to the equation
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Eq, (5b) has no solution which means delocalization, i.e. in-
definite diffusion, end £ {q” ig the guantum delocalization
border. Of course, this holds if Eu exceeds also the classi-
del chaos border('3) g ~ 4 coy® . Wotice that the critical
value (6) corresponds to the condition £~ n, with £ gi-
ven by Eq. (3). Indeed, for ¢ )»na the increase in the diffu-
gion coefficient with n needs to be taken into account. In
Fig. 3 the analytical expreassion (5) is compared with numeri-
¢al date obtained in the present work. The rather big scatte-
ring of points about the theoretical curve may be explained,
at least partially, by the regions of stable classical motion

which still survive for the given values of the parameters.

The observed fast growth of the moment HE in Fig. 1 can-
not be explained by thae phenomenon of delocelization since the
corresponding values of 80 are subcritical. Instead, it is
apparently related to the broad multiphoton "plateasu" in the
distribution function (Fig. 2). This plateau has an evident
resonance gtructure. The gpacings in the unperturbed energy be-
tween principal peaks are approximately equal to the frequency
of the external field. Twelve such peaka, equally-spaced in
energy, are fairly clear in Fig. 2. In some cases geveral seri-
es of equally-spaced peaks were observed: for example, at n, =
= 56, CJ,= 0.8, £, = 0.03 there are three such series.

The total probability of states within the plateau can be
roughly estimated by the excitation probability W1'5 into the
states with n [1.5n ] where brackets denote the integer part.
The increase in E, from 0.03 to 0.04 changes this probability,
at 7 = 80, from 4.1+10"% %0 3.610"2 and enhances the multi-
photon plateau by two orders of magnitude which explains the
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sharp growth of M, in Fig. 1. The field dependence of excita-
tion probability cen be agpproximately described by the empiri-
cal power law W, ; = (EJ&)EHE with kp % 7.8 and £, x 0.05.
This kE value is considerably smaller then the number of pho-
tons required for the direct transition from n, to n x.1.5 o
which is approximetely equal to ky = [5n,/184),]+ 1 = 16. Simi-
larly, for n, =45, &, = 1 the quantities kE g 1 TRL R
0.063, kD = 13, and for 0, - 66, <,= 1 they are kE 2 T8,
E'n_: D‘mﬁi kD = 19!

The results obtained here suggest the following qualita-
tive cascade picture of the atom excitation. First, the initi-
gl state is spreading (Pig. 1) until the localization width ¥
is reached (see Pig. 3 and Eg. (5)). Then one or a few multi-
photon transitions (their number determines the number of equal-
ly-spaced series) transfer the localized excitation onto the
Kigher levels. Here the field is strong enough to provide one-
~photon trensitions with a high probability and this results
in the appearance of a series of equidistant peaks (Fig. 2).

It is interesting to note that no multiphoton effects we-
re obgerved in the rotator nndal{E'T) (for irrational T/4 7).
This is spparently related to a different structure of the
unperturbed spectrum as well as to analiticity.of the perturba-
tion which implies an exponential decrease in its matrix ele-
ments. We note that the harmonic time dependence of the pertur-
bation in (1) is important; for example, replacement of the
latter with a delta-function (16) may qualitatively change the
multiphoton processes. The role of the latter in another model
was also discussed in(fﬁ].

The one-dimensional model investigated here does not take

into account the change in the gecond quantum :
number n,. As shown in Ref. (10) the matrix element

related 1o the transition with An, = 1 1s smaller than that
t;’ar an, =1 b:rEa factor of n2/n, and the nc:z-ra'aﬁunding proba-~
bility is {najn) times less, while the frequencies in both ca-
ses are approximately the same, due to the Coulomb degenerati-
on. Therefore, as long as By, ffa ﬁirihais influence of the second
dimension on the multiphoton,appears to be small. Yet, its im-

pact on the quantum limitation of diffusion may be significant.




Indeed, as in the stochastic region n, is diffusing at the ra-
te 1),,_2::# Dy (%E)E (10)  the number of excited levels is N =

sangan, ~ D, %ﬁ ¥ (R,#0), According to Ref. (7,14,10) the
condition for delocalization is then N » ? . Hence, from (4)
the two-dimensional delocalization border is at:
;‘/E
£ & 2e  ®e (7)

gk Vg m,

Thus, the second dimension sharply decreases the delocalizati-
on border. For n,~ n, and &  ~ 1 the critical value

¢
54?J~p 1/n, which, for n_~- 60, is approximately equal to

the claasical chaos border.OThis may explain the agreement
with experiments of the classical computations in Ref. (4).
However, for n, ~ 1 the border (7) is of the same order as in
the one-dimensional case (6). Therefore one may expect that
for extended states {ng A1) and for a smaller field than (6)
the localization will persists in the two-dimensionsl case as

well and can be observed experimentally.

Another effect omitted in our numerical experiments is
transitions to continuous spectrum. An indirect check of the
importance of this process can be obtained as follows. The nu-
merical code used here causea a decrease in normalization W at
a rate proportional to (g h,'*df)é , where At = 274,, is the in-
tegration time step and 1 is the number of steps per perdiod of
the external field. This "artificial demping" resulte in s
gtationary probability flow in regions of high n values. We
heve found that ever for strong fields (for example, €= 0.05,

o= 1, n, =45, L = 800, n__ = 211) this flow is fairly
mall (4 x 42107%), and does not affect the distribution I,
This suggests that for a low multiphoton plateau the transiti-

ons into continuous spectrum would not chenge the whole exci-~
tation significantly.
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Fig- 1s

Figl- 2

Pig. 3.

Figure ceptions
Dependence of the second moment ME = {(FL—};JL;} }
on time T = %’L{ measured in the number of field peri-
ods. Quantum case: n, = 66, QJO = 1.2; EEG = 0.03
(curve 1), E{i' 0.04 (curve 3). Curves 2 and 4 cor-
respond to the claseical limit of 1 and 3 respectively.

Distribution function fn averaged over 40 values wi-~
thin the intervel 80 < <120 for the quantum case 1
of Pig. 1 (full line) and for the classical case 2 of
Fig. 1(dashed line); n, is the clessical chaos border.
Arrows are drawn with equal spmcing AE = < (in ener-
gy scale), one arrow being attached to the empirical
pesk at n = 142,

Dependence of the localization length € on the model
parameters in log-log =scale, The sclid ocurve correg-—
ponde to the theoretical expression (5); points are
calculated from numerical data; the vertical dashed
line shows the quantum delocalization border (6).
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