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THE REFLECTION OF ALFVEN WAVES
FOR SUPER-ALFVEN PLASMA FLOW TO THE WALL

6.V.Stupakov, G.Vandegrift

ABSTRACT

The reflection of Alfven waves off a plasma boundary is
considered for the case when the plasma is flowing towards the
boundary with a velocity that exceeds the Alfven speed. The
boundary conditions can be met if two whistler waves are pro-
pagated from the boundary. Two boundary conditions are consi-
dered: an insulating and a conducting endwall.

*University of California, Irvine, USA "

1. Introduction

The interchange mode in a "gas dynamic trap" (GDT) [1.2]
inveatigated in reference [3] in many respects differs from
that of conventional mirror machines. One of the important
differences is the large plasma flow out of the trap. If the
magnetic field between the mirror throat and the absorber drops
sufficiently fast, then the plasma will be flowing to the ab=
sorber with a velocity in excess of the Alfven speed. In this
case, the absorber is mnot able to propagate Alfven waves back
into the plasma, which raises the question of how the plasma
maintains the proper boundary conditions at the wall. In refe-
rence [3] it is shown that the dispersion relation for flute
modes is independent of whether the absorber is a conductor or
an insulator if the plasma flow exceeds the Alfven speed. Thus
it is not possible to stabilize the interchange mode by "line=-
tying" the magnetic field lines to the absorber.

Here we consider another consequence of plasma flow to the
endplate that exceeds the Alfven speed. We show that low fre-
quency MHD waves that flow through the expanded section and
strike the absorber can give rise to wavea that travel back
from the absorber to the throat. The frequency of these reflec-
ted waves in the plasma frame is typically of the same order of
magnitude as the ion cyclotron frequency. This high frequency
turbulence which is propagated from the absorber to the throat
may effectively scatter the ions in the region between the
absorber and mirror throat.

An analogous problem also appears in astrophysics for the
golar wind flowing to plametary bodies (such as the moon). Cur
results show that when low frequency MHD oscillations strike
the moons surface, short wavelength waves are reflected that
have a large frequency in the plasma frame.

In this paper, we assume small amplitude waves, and neg-
lect non-linear effecta. The conversion of low frequency waves
into high frequency waves in the plasma frame is poasible be-
cause the system is not steady state in time in the rest frame
of the plasma.



2., Dispersion Relation

We shall consider the case of a dense homogeneous plasms :
WpiM»Wgi , Where Wy, and &; are the plesme and cyclo-
tron frequencies, respectively. The plasma flows along the
magnetic field lines and recombines on the endplate surface
which is perpendicular to the magnetic field (see Fig.1). Ac=
cording to the real situatiﬂn'[Bl , We are assuming the plas=-
ma to be cold. The incident Alfven wave has the frequency &, ,

W& gy and wavenumber ']:,:, in the plaama rest frame. The
frequency and wavenumber of ths reflected wave in this frame
will be dgnoted by ¢« and k , respectively. The dependance
we e twt-ikF is assumed.

The parmetersm,-ﬁ are obtained by requiring that the
reflected and incident waves have the same frequency and X-com-

ponent of the wavenumber in the reference frame of the wall:

W-kah = Wy +lkgeln, (1a)

Ke = kao : {(1b)

where u » o is the velocity of the plasma relative to the wall
(note that kK, o 0). The frequency & in (1a) is a function of
kx and kzgiven by the cold plasma dispersion relation.

In general, it is possible for both W and kz to be comp-
lex. For complex kZ one should demand that the wave be attenu-
ated as it propagates into the plasma, Imkz{ 0. But in our
case, as we shall show later, only real &, kz are possible.
For real k, we require:

2> W, : (2)
>ka

The intuitive explanation for (2) is that in order to propaga-
te from the endplate the reflected wave must have group velo-
city larger than the flow velocity. One can also verivy this
mathematically by considering the inhomogeneous form of Max-
well's equations, where the wall acts as a source term. Equa-
tion {(2) follows naturally when one obtains the steady state
golution by integrating around the poles of the inverse di-
electric function.

In Eq.(1a) w end k, can have both positive and negative
values, - < W, kzd eo , Using the invariance of the cold
plasma dispersion relation under sign changes in & and kz_ it

is more convenient to consider only first quadrant in W, kz

plane (i.e. &, k, > 0). In doing this we shall allow the pos-
aibility of negative W and kz by considering solutions of
Eq.(1b) and also of the following equations: :

—wekyu = We+ lkgolw, (3a)

w-t-k;u.= m.a'l‘lk!u) Li.. (3b)

Equation (32) is obtained from (1a) by changing the signs of
both W end k, and Eq. (3b) by changing the sign of k, only.
Since the sign change of k only changes the sign of tha group
velocity ow f}k s We requlre for solutions (3b)
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instead of (2). (Thus for solutions to (3b), we require that

the z components of the group and phase velocities have Oppo-

site sign.) We need not consider the possibility of changing

the sign of only @ in (1a) because it does not have solutions

for positive W, k, if &> 0.

The lines (1a), (3a), (3b) and the cold plasma dispersion
curves are shown in fig.2 for W& Wy . In this region there
are two types of wave: faat magnetosonic waves with the disper=
gion relation u:-z = {k + kz)vi. and Alfven waves for which
W = ksz, where v, is the Alfven speed. There are two inter-
gsections, 1 and 2, of the line (3b) with the dispersion curves,
but having positive 3O /3 k, they do not satiafy (4) (they
propagate in the wrong direction). The other two intersections,
3 and 4, in figure 2, represent waves that travel in the pro-
per direction, but have a group velocity that is leas than u.
Hence, by (2) and (4), none of the waves shown in figure 2 are
acceptable.

In figure 3 we see the same diagram on a much larger sca-
le. In addition to twe curves whose origin is shown in fig.2,
three curves appear corresponding to high frequency electron
oscillations (see, for example, [ 4] ). Prom figure 3, it is
clear that for u { u;, (one can show that Uy corresponds to the



relativistic velocities which we do not consider here) a pair
of roots, showvn by a circle, satisfies Eq.2. According to con-
ventional terminology, these waves are whistlers.
Counting the intersections in figures 2 and 3 we find
that there are a totel of 10 real roots. As shown in Appendix
using the cold plasma dielectric function Egs. (1) formally
correaponds to a polynomial thet has no more than 10 roots.
Thus we have found all the roots, and, as stated earlier, there
are no surface waves with complex & and kz iﬁ our problem.
low we obtain an approximate dispersion relation for

whistler waves in a high density plasma (u}Pi:puJBi}. For simp~
licity we suppose that the whistler frequency is much smaller
than the electron-cyclotron frequency Wpe and the eleciron
plasma frequency Wpe. This imposes a consireint on the veloci-
ty u which will be obtained later. For frequencies w <« t)ge,

tpe we can set the electron mess equal to zero, which great-
ly simplifies the problem. In this zero-electron-mass approxi-
mation, the zz component of the conductivity tensor becomes in-
finite, which means that the parallel electric field vanishes.
The matrix equation for the x and y component of the perturbed
electric field in the plasma frame is:

r w ” twd
I.-Z’ — N Ex :
1-w 1-w =0 (5)
2, »
o w - 2 2
o e e L

where w=w/Wg » BSeacka/wpi and 3 = cky /wpi .

Eq.5 can be solved explicitly for wa=w(%,}) or Z=23(wi).
Wow we find the frequency of the reflected waves as a

function of plasma speed, and the Alfven wave frequency we .

From figure 3 we see that the whistlers will have @ and kz

much larger than the Alfven wave frequency and wavevector.

Thus for oblique angle of incidence of the Alfven wave, we will

have a nearly perpendicular angle of reflection: kz > k:.

In this 1imit, the dispersion relation which follows from (5)

takes the simple form:

2 w2

Z, - ? (6)
1w
where the +(-) sign refers to the whistler (Alfven) branch.

Another consequence of the inequality Ww,& Wy is that
the two lines (7a) and (3a) almost overlap in the scale of fi-
gure 3. Thus both whistlers have almost the same frequency. If
we neglect the right-hand sides in (1a) and (3a) and use (6)
we obtain the approximate frequency of the two whistler waves:

w:r"—-*l’ (7)

where pM=Ww/U, . We can also obtain a correction to (7)
which 1s valid to first order in W,/ Wy ;

2M we (8)
T ——

where the sign +(-) corresponds to the upper (lower) line in
fig.3. In the limit ku;da ki— » we can show from (5) (see
reference [4]} that in the plasma frame both whistlers are
circular polarized in the electron cyclotron direction,

Now, using (7), it is easy to show that the requirement
W tge » Wpe is satisfied when (assuming for simplicity

Waes Wpe )
me
peV i
3. Boundary Conditions

There are two boundary conditiona that can be used to
describe the reflection of waves off a wall. If the plasma is
terminated on a conducting wall, we may set the component of
the electric field, which is perpendicular to the field lines,
equal to zero. For a conducting metal wall, we have the boun-
dary condition:

$ 0 ose (9)

’ FH T S Sl

where the sum is uﬁer all the waves in the plasma and the sub-
geript w shows that wave amplitudes are taken in the wall
frame.

We also consider the case when the plasma is in contact
with an insulator. In the limit of large density, the wave-
lengths are large compared with the vacuum light wavelength
( ky ® ¢ /w{E , where £ is the insulator dielectric constant).



Prom Maxwell's cquationa, we can show that in this case the
waves in the insulator are surface waves, with wavelength

- wig
bowi Jhs - =3 (10)

Analogous to the two polarizations of a propagating vacuum-
electromagnetic wave, we have two typee of waves that satisfy
(10). One wave has the polarlzatinn'

E kx. O, ") (f"‘l- (11a)
B (o, - c—k';_ ,0) @ (11b)

it is nearly electrostatic (rot E o 0) in low frequency limit.

The other surface wave in the insulator is nearly magnetosta-
tio with electric and magnetic field:
-y

(0,1,0) @ (12a)
Bepho by om

In our limit of intereat, we may approximate (10) by
ky = Lik;l and also neglect the megnetic field in (11b){but
not the electric field in (12a)).

Hext we match boundary conditions by demeanding continui-
ty of E between the plasma waves and the aurfacea waves in
the insula.'bnr. We can also require continuity of B_L because
the cold plasma is not a magnetic medium(which fnllnwa from
the fact the dielectric tensor does not depend nnk).

Since E = 0 in any reference frame for waves inaida the
plasma, we can relate the perpendicular components of Eh,anﬂ
3., inaide the plasma via Maxqall's equa?iuna:

3 Ak ) (13)
(" Ck 3w » E‘%E—:w‘ :BE‘N') .

In urcler to nbtaln the boundary condition for a wave im-
pinging on the plasma insulator interface, we use (11) and
{12) and (13) to relate the magnetic fields in terms of elect-
ric :Eielda in the insulator and in the plasma. From continuity
of B, end B, we obtein:

£ k2 Exw =0, (14a)
z(:.k B )Ew =0, (141)
d

8

where we have made the approximations described after (12b).
The corrections are essily shown to be emall when &aicky ,end
(AT r.k‘ . Using ru-b'g -4:;}:. one can show that (14a) is
equivalent to the condition that the parallel current vamishes
at the end. From (14b), one can show that the Yy component of
the current vanishes at the end.

In order to match the boundary conditions (9) or (14),
it is necessary to transform the wave electric fields out of
plasma frame. We transform the electric field via the non-re-
1ativ:|.stic Lorentz transformation, E a +Lu../cJ:B ; Where
h and B are the perturbed electric and magnetic fields. As an
aglde, we also give the transformation rule for the conducti-
vity tensor, 'j'- &-E' » Where we fransform the perturbed cur—
rent density as Jh;n -+fii « If we use Maxwell's equations to
relate B and B , and charge continuity to relate'I and ¢ , we
obtain the following equations for transformations involving
wavea with zero parallel electric field and transformations
into frames moving parallel to the unperturbed magnetic field:

We = @- kau, (15a)
P g =

A A
WieBe = WS, (15¢)

where (15¢) does not describe components of the conductivity
tensor that involve z,

As it follows from (1a), (3a) and figure 3 , one reflec-
ted whistler has a phase velocity that is slightly larger than
the wall velocity, and the other has a phase velocity that is

slightly slower. The transformation into the wall frame (15a)

changes the aign of @ for the slower wave. Because a negative

@ wave corresponds to a time reversed positive &) wave, the
transformation reverses also the polarization of the slower wave
from electron cyclotron to ion eyclotron direction. This is con-
venient because in the wall frame, we obtain a left and a right
circularly polarized wave, making it easy to match boundary con-
ditions for an incident linearly polarized wave.

We now give the reflection coefficients for an Alfven



wave impinging on an endplate when the plasma is flowing faster
than the Alfven speaﬂ} We consider both reference frames, and
elther insulating or conducting endplates. We ghall omit the
algebra because it is straightfoward. The table gives the elec-
tric field mmplitude for both reflected whistlers when the
electric field amplitude of the incident Alfven wave is unity.
We also give the reflection coefficients for the wave magnetic
fields.

Electric Pield Reflection Coefficients

wall frame plasma frame
conducting wall 4 ﬁJn
2 ol
insulating wall = We 1 /_‘_
2(pu>-1) Vel -

Magnetic Field Reflection Coefficients

wall frame plasma frame
(p2-1)" (pa+1) . 2_4 :
conducting wall }A ; ‘_“]& /'" e
| 2p (ﬁ"ﬂ)" Wo 2M  wo
insulating wall /"(f‘l-ﬂ (pei) 1
Z[ﬁzwd)z <

4. Conclusion

We considered the plasma flowing onto a metal or insula-
ting surface with the velocity exceeding the Alfven velocity.
We showed that the Alfven waves in the plasma reflected from
the surface tranasform into the short wavelength whistler wa-
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ves having (in the plasma frame) frequency of the order of
g »

These waves can cause an effective ion scattering in. the
plasma near the endplate. 1In a GDT, they can propagate back
into the trap, although the frequency in the trap will be much
lower than the local wvalue oftdbibecause the magnetic field in
the trap is much larger than the megnetic field at the endpla-
te. '

We would like to thank D.D.Ryutov for useful discussions.

Appendix
Here we count the number of waves that satiafy (1a),(3a),

or (3b). If we allow roots with positive or negative w, ké &
we need only consider the following two equations for @ and

kz’
.
W= "Eu‘ =W 3 {ﬁ1)
D(w k) =0 (42)
where w* = Wn-‘-“ﬁu“l >0 and D = O is the dispersion
relation for the waves. For a homogeneous plasma, (AE} takes
the form:

c\e‘t]: 11‘1 -S.;j) + Ecj:‘ =0 (a3)

where & is the dielectric tensar. We shall employ the cold plas-
ma dielectriec tensor [4] that yields the five branches of
the dispersion relation shown in figure 3 . Here, we shall
place no restrictions on the plasma density, electron mass, or
wave frequency.

It is triviel to solve (A') for k, and reduce (A%) to en
equation in one unknown. Using the cold plasma conductivity
tensor, we may obtain from {A3) a polynomial in & of order
fourteen if we multiply both sides of the equation by

(w2 wg, ) (Wi wy)? h)

From the palynamial of order 14, we know A(3) has at most four-

11



teen roots. We can algo ghow that the polynomial is zero when
m"= m‘,,_ , or when Ww* = N"g;_ « Thua the polynomial has four

roots that were introduced by multiplying by (“““‘1):“5&:"“!&.:“’:;?”':-

We are now left with a maximum of ten roots. We can verify
that for our problem, all ten roots are true roots, becouse all

ten roots appear in figures (2) and (3).
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Pig. 1.

Fig. 3.

Figgre captions

Coordinate system ( 2 = 0 is the endplate Burfa_%e),
incident wave (W s Ko ) and reflected wave (w,k ).
Megnetic field is in 2 =-direction, plasma flows in
the opposite direction.

Plots of equations (1a), {(3a), (3b) for w»v, (bro-
ken lines) end the dispersion curves (solid lines)
for wde Wy .

Pigure 2 in a much larger scale. The dotted line,
= My ki— » touches the whistler curve.
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