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Abgtract

S-wave amplitudes of the non-leptonic hyperon decays are
calculated in the soft pion limit in a modelless way using the
QCD sum rules method. The results obtained agree with the ex-
perimental ones with an ancuracy;szt}%.

1. Introduection

Recently the QCD sum rules method suggested in the paper
[11 is widely used to describe properties of the lowest hadron
states. The masses of mesons [1-2) end of baryons [3-5], form-
factors and megon coupling constants [6-8] have been calcula-
fed., In refs. f9,10] the QCD sum rules for polarization opera-
tor of nucleon current in an external electromagnetic field
tirst suggested in ref. [9] were used for calculation of the
magnetic moments of octet baryons. In ref. [11] using analogo-
us sum rules in an external axial field the axial constants of
octet baryons were calculated.

In this paper the QCD sum rules method is used to deter-
mine the matrix elements of the wesk Hamiltonisn between the
octet baryons, (Bzin[ B.,?. Knowing these matrix elements
one knows according to PCAC the S-waves in the soft pion limit.,
The values for S-waves obtained are consistent with the expe-
rimental ones with an accuracy of 20%.

Acting in spirit of QCD sum rules to analyse a weak tran-
glition B*'il' 31 one would have to comnsider the Wilson opera-
tor expansion for the T-product of the two baryon currents.
For exemple, if the transition z‘!‘._,, is congidered, the
following correlator is of interest

k= 1[dxe* 0| T{ 1,0 T,c0) 30> =

= 3<010,10> (Cuf +D,) i

where \/, are local operators, nr.nz are operators with the
proton and J <-hyperon quantum numbers, respectively. The RHS
of (1) is decomposed in the two independent J -matrix struc-
tures 1, ‘ and their coefficients Cn ’Dl'l are power func-
tions of S=-"]z. It is clear that the polarization operator
(1) differs from zero only if the weak interaction is taken

into actount, and we are interested in the first crder of its
expangion in the powers of Permi constant G,:. The dependence
on GF is contained in both the vacuum averages <0|0" 10>

end in the coefficient functions Cp, Dp . in alternative




expression for K is provided by the general dispersion relati-
on which gives the correlator in terms of phenomenological mat-
rix elements < Pi IHWiZ;> s <Ol?[PlP;> ’ <z; ["'12|O> o
where Z; , P{  are the real states created by ourrents 'I‘[P,

Ny from vacuum. Equating both the expressions for K one ar-
rives at QCD sum rules. For definiteness we shall refer to the
phenomenological pert of sum rules as to their LHS and by RHS
we mean the power expansion of the correlator.

So formulated the problem would be analogous to that of
calculation of baryon magnetic moments [9, 107 and axial cons-
tents [11] by the external field method. Now some scalar-pseu-
doscalar field coupled to Hgy, plays the role of an external
one. However, some complications arise in our case due to occu-
rence of nonpolinomial in § = --q2 subtraction terms in the
RHS of the sum rules. These terms are to be added, for example,
to the diagram of fig. 1 proportional to

A}
g s3ln? 2 (2)
S
and to that of fig. 2 containing the terms like
< -
Aoy (3)
S

where AUV is an ultra=violet cute-off. As a result, the de-
pendence on AUV can be included in e definition of the ope-
rators Ng , Np ot some momentum S with taking into acco-
unt weak interactions. Then AUV is substituted by some con-
stants of order of a typical hadronic mass. It is important
that physics must not depend on these constants as well as on
the subtraction termg themselves. Really, these terms are gi-
ven by the diagrams where the weak vertex and one of the cur-
rent vertices are tightened to the same point and correspond
to0 the case when only one of the baryon currents creates or
annihilates real hadronic states (the so-called single pole
terms). The commonly used Laplace transformation of the sum
rules first suggested in ref. [1] is not sufficient to canmcel
single pole terms. Remind that the Laplace transformation of
some analytical function $(S) is defined as

S ————

FO= Ly $(S) =

&

=TT &(S)exp% , £20

(4)
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It allows one 1) to imprave convergence of S-‘{ geries,

2) to suppress the higher states contribution in the correla=-
tor end 3) to cancel the subtraction terms polinomial in S .
The only possibility to separate single pole terms is to write
down the double dispersion relation for correlator congidering
the momentum variables §, = —q?" and S?_=“q% of the initial
and final baryons, respectively, as independent ones., Then the
double Laplace transformation in &y, S first introduced in
ref. [6] turns out to be adequate to the problem. To make dis-
tinction between S| and S, a momentum h=q._._-'q{=,£0 is int-
roduced into the weak vertex. Then the value calculated beco-
mes a function of kz but we put hl = 0 g0 the object of cal-
tulation is the former matrix element of interest.

Thus, the external field becomes a varlable one. The pro=-
¢edure of the double Laplace transformation L1 Lz which is of
intereat for us is rather straightforward in the diagrams like
those depicted in fige. 1,2 including the weak vertex at short
distances,., It 1s convenient to use the Feynman parametrization
¢f a diagram to perform this transformation. As for the graphs
relevant to a GF -dependence of the wvacuum expectation valu-
es (VEV's) <D|@"10> (fig. 7, see further) we can unambi-
guougly compute them only at = 0; at h # 0 we have instead
of these VEV'as some complicated nonperturbative vertices of an
interaction of soft fields with the variable external one. Ho-
wever, it is pogssible to use the results of calculation of the=-
ge graphs in the constant external field extending it in pro-
per way to the region of noncoincident Sy, S; . The hypothe-
gis we use is that the contribution inte the double spectral
density of a diagram relevant to the interaction with the ex-
ternal ri}alﬂ at large distances takes the form

p(5y,S) = §(5,)8(5;-5)) (5)

Therefore the double Laplace transformation L'IL?. gt the coin-
cident parameters t¢=tz= 2t reduces to the ordinary one Lt




in S:S.l =51 with the parameter t . Some aergumentation
in favour of (5) is given below. In particular, we shall see
that this form of ?IS”S:_) (and only this form!) allows one
to reproduce in the one-dimensional language (s'1 =5;) the
earlier obtained sum rules [_9,11:[ for the polarization opera=-
tors in the constant external fields. Thus, (5) is no more
than a formal ground of that one can calculate the contributi-
on of the two types of diagrams into the physical amplitude
using two different techniques, nemely, the double end the or-
dinary Laplace transformations.

The paper is urganized as follows. In the next section
gome notations and definitions are introduced. In sect. 3 we
calculate the graphs which include the weak interaction at
amall distances. In sect. 4 we give some phenomenological argu-
ments in favour of (5). In sect. 5 we study the weak interacti-
on at large distances and present the final results.

2. Hotations and d_efinitiona

We stick to the following definition of the -S' -~Wave Al
. plitude A for a decay 31 B, T

<B?_ |r.H IB{? G'anlquq_ug (6)
Then éccording to PCAC in the soft pion limit
+y = X (7
el Gem5 fnV2Z

where <P|H IZ D= ﬂ(ﬂpu}-_J 5'31-33 MeV.

Sum rules for & follow from the correlator (1) ganeraliéz_ed to
the case of the external field with the momentum k g k = O,
In the first order in GF we have

K(q,,9,) =Sexp(i‘lzﬂ“iqi"}*fo'T{’lp(H) (8)
Hy (©) W ()} 10> d xdy

Let us introduce convenient notations

(8)

Let us introduce cnnvanient nutations

K@Q,92= Gchvz(z Z R, (S,,S;)T

(9)
¢=cosb. , s=sinb,
where T'-_ are the four independent Y -matrix structures
To =4,—4, ;Tq =q{ +'q*z. ) T, = % (‘rfq!. "ﬁl#!);
o (10)

Representing k; in the form of the double dispersion relati-
on

T gl fu{,“,?_l} duq dul
(.u-‘l + S, ) (uz+sa)

PO
ki(s”s,_)r-s (11)
O

we can rewrite the double Laplace transformation of hi in the
form:

DO OO
0 o
W u J.lal J.u )
exp(~+ "- At
P( t"l t‘l‘ tZ

Phenomenoclogicael expressions for k- follow from K (qilq?.)
saturated by the real hadronic states:

K(9,,92) = 8p §5 (- Yg)‘q s ﬂ}-mzr
+ highen astafes

%

(13)



more (2T)2<0| NI B> = FplsUp, B=p,T  ama vary-
on bispinors are normalized as ubL = 2 ms Applying the tran-
aformation L.; LZ. to kifsal,sz) we guppress the higher ata-
tes contribution in (13). Neglecting this contribution for the
firat time we have for the amplitude under consideration

s exp( Mz RLLAAY
Axii=gor f:t?'pf-s_t & xp( = F)
A B
T R Ctita)) the sum rule 1 =
: R,y t2); the sum rule IT
2 t,.t,), the sum rule II
(m,—_+mpj h ( 1) ~2%)

The sum rule for the structure T ﬁ’u[ .qz turna out to be
useless for calculations; really, 1t is easy to 'gheck ‘iha.t k
is saturated mai-zll_ly' by the transitions .1. - 2 -2- —) s

i+
1:1+c:.~1:1:|:,.r:L #1 .

The structure of the nonleptonic Hamiltonian Hw depends
on the typical querk momentum Qq . After substitution of HW
into (8) and Laplace transformation is subgtituted by M’-
some scale of the order of t,‘ ; tg_ . Since M~ {G'E.V"" Me
we cen use the result of refs. [13,14]

H,,,(M)'--VIGch (c.(MO- + C, (MO,

O = (@ Hu) (T rs) - cﬁ‘,_r,tuL)(a‘,_&'“sL)
Oy = (& U (T ¥Hs)) + Cu,_ Y i)™
C4(M) = (Xs(M)/xg(Myy)) A%

where A._ = "221.-_-'- tl/g for the four quark flayours.

Our choice of the baryon curremts corresponds to

’np .—.(ﬂ“C!’HMh“’"\JFEqbg) C 1 Xbrﬂ_ (16)

‘while the other currents are comnected with Y, by SU(3)

transformations. The sum rules for the baryon residues 5

‘into these currents (with exception of the case of A ) were

obtained in refs. [3-5]. They are presented in Appendix A.

Thréughout the paper Y denotes the quark field with
the flavour (&,@,¥,.., =1,2,3) running over the three
light flevours u, d, s,colour (B, D0y osos = 1,2,3) and bi-
pinor (i, k.l, con W} 2,3 4} indices, q means a definite light
flavour (U3 ,clT ch. ). Expressions like ¢ Y imply the
summation aver a1l the indices while those 1ike YY do not,
i.e.

TY =T Vi, YV = Yo Yok ()

7

3. The weak interaction at short digtances

Here we consider the graphs containing the weak vertex at
short distances.

When calculating k;(tntz] in SUf3J limit we take
into account the following VEV's:

<I>=1, <¥¥>, <G*>, <YGT>,
KYTYP> <YPYP6E>

where the two last VEV's are estimated with the help of the
factorization hypothesis, i.e. by vacuum insertion. Account of
the anomalous dimensions of the operators is made as in refs.

(18)

[3,4]; the anomalous dimension of an operator averaged by facto-

rigation is put to be equal to the sum of the anomalous dimen-
gions of factors. Calculation of disgrems including emission
of the soft gluons can be most conveniently performed in the
fixed point gauge [6] We place the ¢ coordinate origin either
in H, or, to check the answer, in V[E. or np « Considering
tirst the antisymmetric part of H (operator O_) we get

k. = C. K




Y,

6 tit: Y& (| (-t )2-Ye g o Ya

NS T Lersb SR Lo e el

.[t4.+t§;_ 4 Bita 1_+_{,_a a.[ 2 it
thl 3&1'*'E2.}1 3 ¥ L+t 2 Tt

—135%{%5_— 51| 5

g, = £ fita +Q EHZS[L—(EE%)Z]J

i g '{F."ﬂ" *"M LS tttle

sk e t, +0aq'0
R’S 4‘-1&—1_-*—65:1:1 2 q

wnere 1(Q%) at —k*=@%3 {(Gev?
fo =Y

CHER!

(19)

tgkss the form

dt: ¢t +ta)exp - a/ty)

(20)
3 G (bR 4
and the following notations are introduced
g ﬂg(r‘-n) - en M/A
M oMY T TTn Resp
o = —(2m%<Fa> = 0.546GeV? o

&m'ﬁ; Eaa = <i‘as§'ﬂ' ut“q G:-lw>
b =<g5GL,GlL>
CI"H‘, = "E C Kr‘\.ry" F Bf[-&)

w
2t are the Gell-Mann metrices acting in colour space, and
all the VEV's are normalized et a momentum Mo.

Expression (20) forl(Qz') ig valid at QZ';:; 1 Geve and
diverges lagarithmically at Ql—"' i 3 However, at small @.z'
configurations in which the weak interaction occurs at large
distances can be important in calculetion of the considered
quark-gluonic correction. Following the general idea of the
operator expansion we must systematically aeparate the region

10

¢f large digtances and include it in the definition of metrix
@lements of some (nonlocal) operators; small diatances are
treated perturbatively. Here we shall give an estimate of the
large distance contribution into the considered correction
using the model of the lowest state dominance in the four-

-quark chamnel in correlator at Ql = Q.

To find the residue of the lowest state pole in If-Q"}
let us apply the Lé,place transformation in QE to IL'QE) with a
parameter 'ts and then put for the rough estimate 't3_= m
where ﬁ"lzt is a mass of the lowest four-quark state. Then we
approximate 1(@2) by this pole at QE = O. The result reads

nY 't;"l'tz t"&- m'!.
e (t+ 't‘z_'fts)z' m:EXP.ﬁ_ 5 (22)

t,+ta - _‘?-_j____ { )
= (‘t: +t,+ m?,;)"-e' 8 t{f't?. x O((-t{'*'tl)l

Corresponding contribution into the correction due to

4 lPtP LFG— ?) does not exceed 10%.,

Of the VEV's considered (see (18))only < YV q}G?} gi-
ves contribution into the matrix elements of the symmetrical

operator O+ (in the graphs like that depicted in fig, 3). When
calculating this contribution we reveal an uncertainty in sign
connected with arising a difference of the terms of the séme
order of magnitude determined mainly by the large distance dy-
namics at Ql -0 . However, we can say that this contributi-
on is of the order of a few percents of the whole amplitude.

A large value for the considered matrix element of O, would
mean a violation of the Pati-Woo theorem [10], which holds ex-

perimentally with an accuracy #25%. Therefore we neglect O
in this section.

Higher states contribution is accounted for in (13) in =
model way. It is suggested that transferring the sum over the
higher states from LHS to RHS of the sum rules reduces to 1i-
mitation of the integration in the double dispersion relation
(11) in the RHS by gome regionﬁ « It seems the moat natural
to introduce a duality interval So in each of the baryonic
channels, i.e. to pth to be the square:

11




Q ={wyu) o< Us ¢S, i=1,23 (23)

Accepting this model let us give an estimate of ACZ:) put-
ting 't , £, —> ©© . Equally with en asymptotic loop the
diagrams m,th iterations of the quark condensate £ tI-'T') usual-
ly give & considerable contribution due ta the loas of the
small loop geometrical factors ({61{1) % In our case the main
term in ki is that proportional to (‘V'{’ tl"~|’> and it is that
proportional to <YY> in hE’ ii'._’ As a result, we have in
SU(3) limit from(14)

& *Va gts2?
3 -YS, maz
+ esC_(Vs,) 3 as: # (24)
AT MGt | S 8Tasd
7T~
aem ‘FZ
At the same time the sum rules for the baryon residues give
Lq"ﬁ 4 g2
e s 728 (25)
i‘ias:'

Combining (24) and (25) so as to cancel the S, independence
in (24) as far as it is possible we get

cs

AEh= 3 4Ty C_(po) (26)

4
{
2 5@
€ mr
Here the known result of PCAC is used [1 _2]

2 .2
w { $xMx (27
Sqqs g M, +my

12

Thus, we see that the sum rules I and II lead in a consistent
way to the estimate

+y_ €S $§y¢
Ah= % SE

o (f"'-‘) ~ 2 (28)

at My +MY =11 Mev, es = 0,215, A = 0.1 Gev, *s (Ho) =
# 0.7. As for the sum rule IIT it possesses the largest sensi-
tivity to the continuum contribution due to the high power of
1:1, t2 in the main term. Here we can state a consistency with
I and IT only up to a factor of 2 (at the typical values

So 52 23 Gev?).

Hereafter we consider only the sum rule I which possesses
a comparatively small sensitivity to the continuum (as it is
geen from (26)). Besides, the structure T.| =ﬁ{ + ﬁz survi-
ves at q = Qy which is important for the analysis of the weak
interaction at large distances.

Finally, let us present the corrections to k1 taking into
account the SU(3) violating operators

M PY, M PGP, UTL- ST, (UT~-SEVG  (29)
While in SU(3) limit we have had
A(z’;)=-Acn"_)v§="—§-Ac.=.:) ~k, (30
now three functmna h.‘a, B= 5- A = arise for the
decays Z A -— Trespectively,

Rig = C cmk’
r

K % [+ [ ta

b A ﬁ, m‘“l‘ (t +t;,._) ztf+t,_

_{ /9 £ |
= Mg L 2L N
¥ [ t?. q(t +t,_)’:] AN

» g +’9 tt
Sa~fL it 20— ze.
P “ﬂ“*( T, T

13_



S ‘t1'+'t1_)
T Ety )7,

- 73 + {1t t,+
K~z = &mga Loty - {moag (3 (25 Tt
4 b sV ¢, |

—_—— ta-Ftﬁ‘) 2 '5 £:L.r1 qE;
dar o aﬁ-( ~ti+atit, + 13t | 1,z+z-e‘)
e &t, ttta /)’
Eif‘ R"IE % e L% (t’f ~2t, + 4 t{tzt,_)_l'
A 9 (24% + 13%,t, - ah t
=~ m i ( 4 { 2
HE TSR vp *orat )t
8 2,413 ¢ 4 o4k {1+9.e.‘
+Sa2g (Y Ittty _ 4 a (
3 M 1t2. 3615' -td-ffgl
3 4+ 18 o Mt"-
+3 Ry t:!.)

where f- = (S8 - lal.'U.)>/<'LllJl> > '5‘
= L(SGS- uGu))/<’uG—u>

4. Interaction of a variable extermal field with
the soft quarks

Here we consider a possibility to express a result of the
double Leplace transformation Lyl at t, = t, through that
of the ordinary one L.-t in 8= 51 = S-’t. for the diagram rele-
vant to the interaction of an external field with the soft
quarks (i.e. at large distances). Namely, we give some argu-
ments in favour of (5) paying a apecial attention to the case
of the wesk field.

Firstly, this model looks quite reasonable from the view-
point of intuitive approach: once interaction is soft, it can-
not eppreciably change the invariant mass squared Sy of in-
coming three-quark state. This circumgtance is just reflected

14
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by the © -function in (5). Secondly, the double spectral den—

gity of this kind can be obtained by explieit calculation of
the graphs of figs. 5a, b' containirg the weak vertex at short
distances. This fact can be viewed as an indication to that

the same property holds for the diagrams of a similar structure
although relevant to the weak interaction at large distances
(see fig. 7). Thirdly, our hypothesis is supported by an analo=-
gy with the polarization operators in extermal fields coupled
to the quark bilinears. Here we discuss the corresponding sum
rules in more detail,

Let us first consider the case of a constant external fi-
eld to which we want to reduce the case of the ?ariabléunehow.
single pole terms not cancelled by [.t, are to be taken into
account in the LHS of the sum rules, The latter take the gene-
ral form [?,11]

(4 +3)exp(- m)’ran(fzﬁ-B)

.e:cp( ) ZC - | (32)

Here A 1s a baryon-baryon-external field coupling sought for,
B parsmetrizes the single pole terms, i'labels the excited
states. The model of continuum suggested in refa. [9, 11] al-
lows one to rewrite (32) in the form

‘FI(A-I-B'!:) = Bxp(%t)zcntﬂlEu ( _St:) (33)
n

where

*) Contribution of the graphs like that depicted in fig. 5c
relevant to the perturbative non-diagonal quark mass insertion
turna out to be several times smaller than that of the graphs
of figs. 5a,b. In turn, the latter is only a few percents radi-
ative correction to the whole amplitude. Therefore the graphs
congsidered are omitted in the subsequent analysis,

15



-
{ n-ig4 |
gl ) S n>4{
E,(x)= (n-illé 9 (34)
"; n<O

It was shown in ref. [11] that in the case of vector, tield Cy
reproduce the coefficients in the expression for $° . 4s a
result, the ansatz (33) presents the only possibility to ensu-
re the conservation of vector current, A =gv~= i) Sobeing
the continuum threshold in the sum rules for P « In general,

A and B are determined by an asymptotic behaviour of the RHS of
(33) and so they crucially depend on the model of continuum
used. The results of refs. [9,11] show that the ansatz (33)
presents gquite reasonable choice of this model for it leads to
the consistency with the experiment.

Further, a dependence of the RHS on S, and t' imposes
some limitations on the form of the double spectral density
_P(S{].SL) « Really, we have for the contribution of an ar-
bitrary term in (33) to this density

C.A"E (S_n)=|_ S'(“:u_‘l*:)‘iuiduz (35) i}
" "oE (u..l't'S{)fu,_‘f‘Sl) !"‘

The integration region 2 is parametrized by Sg . In princip-
le; one must write out in the RHS of (35) also single pole
subtraction terms not cancelled by Lt . However, the only ne-
cessary subtraction in the diagram of interest of fig. 4 is to
be done in the subdiagram I; the shaded blob does not add any
new divergences for it survives, by definition, only at small
momenta P:', Pz?: and in the case '=]0:_=k=0 it reduces to
the finite matrix element of a definite (nonlocal) operator.
Corresponding subtraction term is polinomial in -51 ’ S;_ and
thus it is cancelled by L-t.

It iz shéwn in Appendix B that (35) leads to

16

9(54151) =C“Ei1-_:ﬁ3(s1 -$2) (36)

If the spectral density of a function 5‘(5”51) is proportio-
nal to 3(3;—57_) » one has for the Laplace transformations of

§(S4,S2): .
L L, $(5,S)= {;Ta: L.!,_f' (s,S)
L( L,_§651,51)= j' Ltf(-sj‘s) at f‘ =t1= 2t

(37)

5 The wesk interaction at large distances

Here we consider the graphs determined by the dependence
of the VEV's on GF"

Namely, we have taken into account the following VEV's
different from zero due to the weak interaction and contribu-
ting to the [ -matrix structure q of interest:

<V,,_cl§ >, < V‘ud?Gﬁ < VFV,,VAJE))) <ci§‘qq‘> (38)

where the last VEV is studied in the framework of factorization

<dTqg> & <dT><qq> (39)

These VEV's generate the graphs presented in figs. Ta,b,c,d in
which the two quarks Ef and weakly interact at large dis-
tances. As for the grephs in which the four (valence) quarks
.§_. Z . " , W interect at large distances, their contribu-
tion was estimated in sect. 3 (see the consideration after
(19)-(21)) and turned out to be negligible for the given orders
of the power expansion.

The VEV's (38) can be differentiated in Gp with the help
of the equations of motion

(V9= Mgq + 37 (40)

17



“ i
and this reduced to the pure QCD VEV'as of some local opera-
tors. For example,

= TMw _ 2Hw |
<dizh>=-L-<ol fi_ = 10>8"%8;,

(Eﬂ)zl(%).) I(A=6 fc[ac (xX-2).
0

.Pn({+.pf_ 2_) = A+ OC/'IZ) (at my =0) ny

[+.4
] .
<7 :}Et):‘-l- <-S-3Hw>(¥ -)‘ Sq_b (42) This term does not contain formally large logarithm while (45)
I~ 43F af Mk does. Besides, (46) vanishes in the chiral limit M, d ¢ > 0.
Phese VEV's are determined at the typical momentum Maem. . z:eve:', thege factors diminishing the ratio of (46) o (45)
Let us express them through the VEV's of the operators deter- < &‘i;%fnjﬂ;?si é_i)ratl}', by the smallness of the value
mined at a momentum M sufficiently smell to allow us %o cal- i aiats venishing in SU(3) limit, secondly, by the
culate these new VEV's by the vacuun ingertion. Some new fo- thei i rtz actor 6 in (46). If we start from H- > ms
ur-fermion operators appear ai such the renormalization which _ ratio of. (46) to (45)
include both the left- and right-handed querk fields (contra- 2 m& {
ry to the original operators normelized at M¢ ). Just thaﬂer 2wl zhmc. 47)
gperators give a non-zero result at the vacuum averaging. In F’ W

the first order in (g they arise due to the emnihilation

graphs of figs. 6a,b. resches unity at fh & 0.5 GeV. Here £ = <(Ss~-UU)>/

A<UU> 22~ (0.15+0.20

e L] (] « Thu - -

Let us consider the four-fermion operator entering {41) 4p~ glgc S—, o’.fquarks seting zhseﬂ :; 1:‘:: only U s C- s but

in more detail. It possesses the following structure : cant contribution to the VEV's considered i &k am
i : Ired.

A' Y A Let us present expressions for the VEV!

3 l"s M C (43) ~ o EV's of interest

CACEUER I AR b G s
e 77 <31>9Cr T, %ik®

where ferlr =.(|,,3¥H or B’Ht“&h’f‘t“ . Ites renor-

malization due to the graphs of fig. 6a leads to the operator <V§LJ'? §t>_ _G-F csVZ <q_q>-;_c Cfr )‘ aa'b

(&LYP'thdL_ELYF-tnSL-) (vaHt“‘PR) enr"r;;é_ (44) dq-""lﬂ HZF G C‘Sﬂ ZR P - |
- <V SksGa>= i AP M Cap
which being sendwiched between the vacuum states is proportio-

(48)

nal to { ‘J
2 A LN -8 Y )., ¢t
((Ett:l'? ""135'?) n— (45) B e A a=bs_ GecsVl .
e grapha o . e follo erm ( ;
The graphs of £ig. 6b add the following term to 45) 'CER"in'(‘qt)ikstb

where with taking into account the nonlogarithmic terms
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"= C;:h sC )[{n’%‘--rz -r_%_*—l(%’t)])
Con= St ts o] b T +3-2 1(."%)] )
Cap= 25t wstr( W+ §) -

e {1(3;:11-5& O‘sc_f‘“)l (%) (49)

At calculations we have also summed up using the renorma-
lization group (RG) technique the terms of the kind
'0(2 En“‘ mC/H appearing inc.m,CZR in the next orders of per-
turbation theory. Operators (43) entering (41) and contribu-
ting to C{R are connected by means of U -gpin rotation with

the following operators
(dLrsL + ELFJ.L) (U, Tu) (50)

entering the effective LASl = 1, ‘ﬂTl- 1.!2 weak Hamiltonian.
So they have the same RG properties and

LLA qu.(] (51)

w =—Cs(p)
Ez-pressiona for ng q«k') were nhtained in ref. [1 5] As for
the operators eutering (42) and contributing to C?.R only the
flavour singlets are essential in SU(3) limit. They belong fo
the following set of operatoras closed under RG transformations

B CY MY + (L>R)
@L'r \.PL.) ( T‘Rr "VR)

Their RG properties are given in ref, [1]. At Kg(Me) /K< (’4)-
= 0,3 taking into account the higher powers of logarithms pro-
vides the negative corrections of spproximately 15% and 30%
to the one-logarithmic terms in the expressions (49) for C,;R

(52)

20

and czg . Trespectively.

Calculation of the graphs of figse. Ta,b,c,d is performed
at q i =Q,=Q making use of the formula (37) for the double
Laplace transformation in terms of the ordinary one. The final
result at T,=5, =21 nes the fom

—A fﬂ’)'v— L o7 :
h + k (53)
(2 {5 S&
.Eﬁ‘:‘(m%*mz')-tl kqﬂ"'hgh
z't hfi +h5‘=‘

where k are given in aect. 3 and
iB

Res= 2 Cag i 'rl /gEch-

3 “fa _Y
-3 C3RQZM4D m B
- 25€ » 3% +"/9 89 E, (%)
Rep= 3Rt 3 7 Crr® ms g § f-t

 * ka-:-. =4 Rgs + %‘ksn 75

O(;(H-) - So
i e A

The RG parameter q is needed to express the VEV's <q"'(>
<_G'q,> <Gz> and the mass mS taken at ’L_through the-
ir values at F-g at which these values are considered (by
definition of Me) as known ones. The usual choice of Mo, M
gatisfies

O(s(flo) '-‘-0.?3 “5(:'1):'-"1 (55)

The threshold So in (54) is defined so that ( Sp,Se) is the
point of intersection of the diasgonal Sy =5, with the boun-
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dary uf_Q .

Varying S, we aim at the existence of a platou in the
dependence of the amplitude of intereat on t . Power correc-
tiona must not exceed, say, 30% of the main term in order that
the whole calculation using a few first terms of the operator
expansion might be reliable [1]. The dependences of A (Et)
on ‘t are depicted graphicelly in fig. 8 for three choices of
Sn « A8 1t was mentioned in sect. 3, the term proportional to
(‘FW*-F?) gives the leading contribution into the amplitude.
The ratio of the next power correction due to WY *’G-‘Y}
to this term is 30% at T = 1 GeV® and 20% at £ = 1.5 Geve.

At the same time sum rules are the mogt sensitive to the
lowest resonance contribution just at T & m: = [m.f"f‘m%)/,z
2 1 GeV. It is seen from fig. 8 that A(t) is practically
congtent at 0,6 < T < 1.5 gev®, Sg = 2.15 GeV? and is equal

A(zL)=1{44 (56)

The typical scales of mz, Sa s t become approximately 1.5

times larger for the = decays.

Using the triangle version for 52.

52={(u{1‘-t1_'ﬂu1+ W, < 25,)1‘.4.1'}01 M;)G} (57)

instead of the square one (23) enhances the theoretical values
forACEt)nA CA:.) alightly (by no more than 10%) but this en-
hancement can reach 25% for A(E.:). We stick to the sguare ver-
sion far..q?. since namely this model leads to the identity of
the duality estimates (26) for the two different ¥ -matrix
structures and, in addition, this model posseses g more trans-
perent physical sense,

The results of the calculation are given in table 1 for
Mo = 4.25c;ev) Mg =0.15GeY, £ =-0.2 (58)

and for the three choices of m‘:* A . mhe residues ?B
were calculated independently for each choice of the parameters
making use of the sum rules given in Appendix A. The amplitu-
des A'l obtained with the neglection of kS in the correlator

22

are also presented in the table. Index 5 serves to remind of
the definitive role of the emnihilation mechanism in Rg lea-
ding to appearance of the operator structures analogous to 05.
06‘ It is seen that this mechanism contributes mainly to the
/A decays. This fact is connected with that the Boyn graph of
fig. T7d yielding the dominant contribution to hSn(the last
term in k5l(54n does not contribute to 55

6. Gunclusinn_

Up to now the main difficulties usuelly encountered at
calculations of the non-leptonic hyperon decays have been con-

. nected with a choice of the normalization point of the effecti-

ve Hamiltonian and with a modelless accounting for different
mechanisms on equal footing. We see that the QCD sum rules me-

thod proposes a way to surmount these difficulties to a consi-
derable extent.

In conclusion, the author is grateful to VL. Chernyak,
I.B.Khriplovich, A.I.Vainshtein, O.V.2Zhirov, A.R.Zhitnitsky
and I.R.Zhitnitsky for numerous helpful discussions snd reg-
ding the manuscript. Discussions with Prof. A.I.Vainshtein had
led to understandihg of the role of the long-distance dynamics.
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AEEendix Ao

The sum rules for the baryon residues into the currenis
uaed have the fom V/ﬂ b =N

”

282 exep(- 1) = -tq Egc::)l;@ SRl t
+ 0.?'( By m“) 5({-)

2?’2 eozp(- ) f(t)-ZmSG.tE;-(x)LM :z;a)

2;%. exp (- Wlf\) f(t)+71~£nsa£w )tEmLMf

= (34)

+§-(1

- Y
exp (- F2) = $(0)+ %w'-(zm"vt*,,,’ .

x= ‘? ) b= En(-—)/ﬂn(%—) i
These are taken (with exception of (3A)) from rafa.[},ﬁﬂ.

ﬁEEEnﬂix Be

Let us rewrite (35) in the form {_cn = 1)
I"I.-“l. So CUy,Ua) u
(%) = [ ()

__exp(__g_] clu%clu;,

Bverywhere the symmetrical part of f{.uhuﬂ is of interest,
i.e. we can put

f(l.l.”i-l.;_') = @(U,,U 1) (2B)

without loss of gemerality. Let us divide G2 into two regioms:
a narrow band along the diagonal, ‘Uul uﬂ{..i , and its com=
plement. Then (1B) at £-»0 tekes the form

(1B)

24

Do ul'l -q cP'fu 50

S oot =t F)du i ["t VFS Pu'l“‘“’“alu1

[~ =

-5 i-k(uo

k=0 ("' '?f') dui (3B)

Us+0
Ch) § = {22y, 1y
U0

xi(u“ u )={ '{J. (M”U.g_) 652
o 0, Uy Up) €S2

and equation bl,_= ‘P(uhs.) determines the boundary of _(;2 »
An inversed Laplace transformation of (3B) results in

iy e _)_S"fut “1.')
Vep. § e du,=0

O

where

X2 Cuﬂuﬂdaz)

(4B)

(5B)

(6B)

e |
folu = cnj-m B(Se=Uy)8(Uy)

It follows from (5B) that P(u! Uy)=0 st M.{%uz

hence

(n) '

j’(uq,U.:_J = Zans (U =Uqg) (78)
n=0 ' :

Then accounting for (4B), (6B) we finally get

n~{
Uq
(u @

FHu?= i

U—=U,) (8B)
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Figure captions

Asympiotic loop. The dotted lines cut the diagram
across the channels in which the lowest states are
to be separated.

A diagrem relevant to the four-quark operatur"l)q“[’l]’
in the operator expansion.

hﬂqmmﬂﬂwrnethGWHWr?¢WGw
The dotted circles denote two {‘P ) or three
By o W G'} factorized vacuum fields.

The graph relevant to an interaction of an external
field of momentum k with the soft quarks.

Graphs possessing the same topology as those calcula-

ted below (see fig. T7) but containing the weask vertex
at short distances.

Annihilation graphs.

The diagrams relevant to a dependence of the VEV's
atudied on GF « Symbol W means accounting for the
weak interaction in the first order in GF « Gross
denotes the linear term in the expansion of vacuum

fields in ﬂtﬂh, the distance between the baryon cur-
rents.

The amplitude A(Eg) versus t

for different
thresholds S,.

N\ = 75 Nev, ma = 1 Gev2,
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