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ABSTRACT

Arguments are given that the main nonlinear features of
low-lying quadrupole excitations of even-even soft sphe-
rical nuclei are due to the quartic phonon interaction and
to the coherent rotational response of noncollective deg-
rees of freedom. The corresponding Hamiltonian is sol-

ved by group theory methods; results give a good des-
cription of energy spectra as well as of transition proba-
bilities, number of fitted parameters being less than that
oi IBA. Some regularities are found going through the

periodical lable.
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i. Introduction

The great success of interacting boson approximation (IBA) firstly
introduced in [1, 2] and reformulated and studied in detail in [3--5]
has animated the interest to the description of low-lying nuclear states
in terms of elementary boson excitations. However the impartial obser-
ver has to note that the original simplicity and attractiveness of IBA
disappeared gradually with the number of fitted parameters increa-
sing. Specific features of IBA (identification of bosons with fermion
pairs, boson number conservation, taking into account s- and d-bosons
only) are proved to be weakest points of the whole approzch and have
obtained neither experimental nor theoretical justification [6].

Below we limit ourselves mainly by soft spherical even-even nuclei.
The microscopical boson expansion technique (BET) was shown [7] to
be able to describe experimental data for typical nuclei of that kind
(Ru and Pd isotopes) quite satisfactorily. But the BET is connected
with complicated numerical calculations and the procedure is not uni-
que. Of course il is always possible to diagonalize the pure phenomeno-
logical boson Hamiltonian {8, 9]. For Ru isotopes such a calculation
[10] fits data better than IBA. This manifests that the usual quadrupo-
le boson scheme with anharmonicity in principle does reproduce all the
picture. The goal of this work is to find out which anharmonic terms
are most important ones and to demonstrate some regularities genera-
ted by their dominance.

2. The dominance of quartic anharmonicity

Bohr—Mottelson phenomenology of quadrupole motion based on
two ideas: (i) the collective nature of states under consideration (their
wave functions W=2Xc¢;¢; are coherent sums of Q2>>1 contributions of

simple excitations ¢;, ¢;~Q~'/*« 1 so that each simple mode is weakly
distorted by collective motion) and (ii) the collective motion is rather
slow that its frequency o< 2E, the energy of pair breaking. Actually in
soft nuclei one has i

TE_E.U._*ﬂE}_”E. [1}
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Using parameters Q and t one can estimate roughly the anharmonic
effects. The quasiparticle-phonon coupling constant ¥ can be deduced
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from equating the phonon propagator | /w to the RPA two-quasipartic-
le loop ~yQ/E® It gives v~ w?/Q7° or, from (1), y~w. Therefore,
the quasiparticle-phonon interaction is strong for soft-mode phonons.
This coupling induces n-phonon loops H'™ which can be estimated as

HW e p"QE E‘— ~oRe ! (2)

According to (1), cubic H**) and quartic H'*) anharmonic terms are

strong whereas higher terms H'*>* are relatively weak compared with
o and can be treated as perturbations.

Moreover, it can be shown that H® (as well as higher odd-order
terms) contains as additional depression factor due to the approximate
particle-hole symmetry near the Fermi surface. In macroscopic
systems such contributions vanish analogously to the Furry theorem in
QED. Thus, one can expect that the pattern of spectra is determined
mainly by the quartic anharmonicity H*. At <1 one should keep only
the coordinate part (~p*) of Y. Since four quadrupole bosons have
only one spin O-state the structure of H'" is unique and contains only
one constant [11, 12].

So one can start with the simple Hamiltonian

Ho=Huam+ H=0 2 (didy+ 5 )+ 5 | S(= 1P diasf] (3)

where Bose-operators d, and 4, are introduced and collective coordi-
nates a, and momenta m, are defined as

1

1 L
Gy ™ 72'—; [du+(—1)dT,]= l/%d&-{_) ' (4a)
= —i A2 [dy—(— 1Y ]=—i A2 df” . (@)

3. The solution of the problem

The Hamiltonian (3) does not conserve the boson number N,. Ne-
vertheless it gives the SU(5)-pattern of spectra. It can be shown [12],
without numerical calculations, by means of the variational method
which gives even in the simplest approximation results of high precisi-

on. The method was used for the first time-apparently in Ref. [I1] and

afterwards was rediscovered by many authors (for example, [13, 14]
for various nonlinear quantum problems. The method consists of the
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boson operator canonical transformation which corresponds to the op-
timum choice of the boson mean field (the condensate of boson pairs
with the angular momentum /=0). The remarkable property of the
Hamiltonian (3) is its five-dimensional rotational invariance
(O(5)-symmetry). The corresponding constant of motion is the senio-
rity © (number of nonpaired bosons).

Introducing the generators of the SO(2,1) group

o l
P-4 (1P, PT=LI(—Iydia, (52)
and
1 ) I S
Bt (0% 3 =g ottt ) =

where n is condensate boson pair number one reduces the Hamiltonian
(3) to the simple form

Ho=0[2Py+ A(2Py+ P+ P1)] (6)

Then one carried out the canonical transformation

P=;—(Vm—u-l—ﬁ)gﬁ—k%(Vm_p—?i_):p)z.ﬁ"'—;—(mu—ml—u)ﬁu, (7a)
Pn—;—(my} [-l:—u)ﬁ.]- %(mu—i)(ﬁ—kﬁ") (7b)

in each subspace with v fixed separately. The dimensionless variational
parameter w,—1 should be determined from the condition of compen-

sation for «dangerous» graphs in the transformed Hamiltonian
(P, P™, Py),

mg—mﬂ=4(a+i)n. | . 8)

2

The low-lying states are labelled now by quantum numbers |v, 7, J/, M)
and the energy spectrum can be expressed as

B tomr ) d)r
+2muﬁ{l+1u[3(ﬁ—l)+v+%]}4.0{13) : 9)

where the renormalized coupling constant 2, is small
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St | O i I l (10)
. . ig; i
o 4(v+7/2) " 4(+7/2) " 14

Residual terms in eq.(9) give small admixtures of states with the same
v and A’=n=*1, Ax2. For the case of actual interest (n=0 or {fz;=l}
eq.(9) without residual terms guarantees the level energy_u_nth!n thef.
accuracy better than 19%. Hence, we keep the S_U{S)-ciassufm}atmn 0
low levels (for each v) at arbitrary strong quartic anharmonicity.

4. Yrast-spectra and angular momentum effects

The yrast-spectrum E, (=0, 2v=J) is given by the first term of
LL1] ;
eq.(9). It changes from the equidistant one, E,=E,+ 5/, in the har-

monic limit (A=0) to

T %m(!+5_)[2{!—|_—?)h]”3 | (an

7
for the strong anharmonicity when 4LU+TJJ~}}>1,

: 1/3 ) _
mﬂml4(u+ %)lj . At not very high J (11) coincides practically

with the phenomenological expression Ej-:Eﬂ+a!j|-ﬁIE suggested in
[15] and with the corresponding limit of IBA. Fm'_hlgh'er J one obtains
from (11) E,~J*? as in the variable moment of inertia (VMI) model
[16, 17]. In table 1 we compare the asymptotical predictions (11) with
yrast-spectra [18] of typical spherical nuclei '"'®Pd. Let us note that

for the energy ratios R,=(E,—E,)/(E,—E,) eq.(11) is parame- _

ter-iree. |
We see that the asymptotical formula (8) exactly describes the

yrast-band of '"Pd without any parameters. As for the spectrum of
102p(d, deviations of R, from the asymptotical value R““,_eq.(l 1), can be
described by one constant 0 =0.012+0,001 corresponding in ’;Ee abso-
lute scale to energy shifts (6.6+0.7)J(J+1) keV. Isotopes R_u and
12Cd show yrast-bands similar to that of '°Pd (all these nuclei have
N =54, ie. four valence neutrons). Deviations from R}® are small for
182X e (N =78, four neutron holes), *"Xe (N =86, four neutrﬂgs in the
next major shell) as well as transitional nuclei with N=86 (***Sm and

190G d) and N=88 (12Gd and '**Dy).
6

5. General trends of yrast-spectra

One can try to describe general trends of low-lying yrast-spectra
with one-parameter interpolation

Ri=Ry+al(i+1), . I>4. (12)
This simple parametrization gives reasconable description (up to the
back-bending region) for soft spherical as well as for well deformed
nuclei and o is changing regularly from one nucleus to another. In
Fig.1 the values of w=0(E,—E,) are shown for vibrational nuclei Pd,
Ru, Cd. For near-magic isotopes (N=52) one obtains w~—10 keV.
With N increasing w crosses zero (for those isotopes R,;~ RY") and rat-
her soon becomes approximately constant, w ~ {(8—9) keV. The behavi-
our is similar for isotopes of Xe and Ba. Errors of fits are connected
with the dispersion of ¢ values extracted with the aid of different num-

ber of yrast levels. These errors increase significantly in near-magic
nuclei where w <0.

The similar picture is proved to take place in the next neutron ma-
jor shell (isotopes of Sm, Gd, Dy and Er), Fig.2. Again one obtains in
near-magic nuclei (N==84) w~—(10—13) keV, then w grows steeply
followed by platean-like region where w~6—7 keV. The same is ap-
proximately valid for isotopes of Ce and Ne. For isotopes crossing a
neutron closed shell at neutron number increasing, one seen roughly a

_symmetry with respect to the magic number with deeply negative valu-

es of w for N = Nmagi. In spite of the stable deformation typical to nue-
lei with N—>-90 their yrast-band behaviour, from the viewpoint of the

parametrization (12), is quite analogous to that of soft spherical nuc-

ot Heavy nuclei (isotopes of Th, U and transuranic elements) show

approximately constant values of w=~3—4 keV. Thus, practically all
yrast-bands of nonmagic medium and heavy nuclei can be described by
eq.(12) the quantity wJ(J+1) being close to the rigid-body rotational
energy, h?/2w~ T, rigid-body moment of inertia. It is well known
that the kinetic energy of Hyarm, €q.(3), contains the rotational contri-
bution with small hydrodynamic moments of inertia ~p% We see that
two important parts should be added to the harmonic Hamiltonian to
achieve the qualitative agreement with data: (i) quartic anharmonicity
and (ii) rigid rotation. Since the description covers also yrast-bands of
well deformed nuclei where total moments of inertia are equal, due to
pairing correlations, to T= (1/2—1/3)T,;, one can interpret the inter--
polation (12) as subdivision of rotational contributions into rigid-body
and hydrodynamical ones. Therefore one can speculate that the main
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effects of superfluid pair correlations are accumulated in the quartic
anharmonicity (for nuclei with a soft quadrupole mode, eq,(1)).

The microscopic theory of large amplitude quadrupole vibration
predicts [19, 20] such rotational contributions as consequence of the
coherent response of noncollective degrees of freedom to slow quadru-
pole deformation. Calculations using BET neglect usually such terms
and consider mainly high order contributions to potential energy (3).

There are some deviations from the systematics considered. It fails
for isotopes of Te (for '*'#Te w=0 and w<0 for other isotopes). The
average value of w for isotopes Os, Pt and Hg is higher than obtainab-
le from T,,. Probably it is a consequence of the effective nonaxiality
typical for this group of nuclei [21, 22]. Here it is necessary to take in-
to account the sextic anharmonicity ~p® cos?3y. Terms ~8° are impor-
tant also in cases of abnormal smallness of quartic constant A and in
unstable situation with L<<0. The sign of % is not fixed by the microsco-

pic theory; it is determined by the counterplay of p—p (h—h) and p—h
~ interactions. The region <0 where H® is crucial for restoring the sta-
bility can be the connected with the long-standing problem of low-lying
07 states in some isotopes of Ge, Se and Mo. Letting alone these 0% le-
vels one can see that in general isotopes of Se, Kr and Sr also obey the
common rules.

6. An illustrative example: Pd isotopes

Having established the general picture one can try to reproduce not
only yrast states (here eq.(12) is rather close to VMI description) but
the whole pattern of low-lying spectra including side bands. The family
of isotopes ®Pd—'""Pd was chosen as an appropriate sample due to
abundance of data. We have used for comparison (Table 2) yrast le-

vels up to J=14, y-bands and side band levels with boson number

Ng<3 i.e. almost all known low-lying levels. All these levels appa-
rently are of collective nature justifying the applicability of the model.
Experimental data were taken mostly from [23]; data taken from ot-
her papers [24, 25, 26] are indicated in Table 2.

We followed the very simple procedure fitting ¢ in (12) for yrast
levels and then using this value to calculate R, for other states by
eq.(12) where R} should be replaced by the corresponding expression
following from eqs (8—12) in asymptotical limit. This one-parameter
fit was compared with the IBA-type fit carried out with three-parame-
ter formula

Ry=Ng+ (Ny,0,0 | 3 = yILFTC,((d d*), (dd)Doo

L=0,24

Ng.0.0y  (13)

with boson number Ny conserved [5]. We show in Table 2 results as
triplets of R, for each level where the upper line gives our calculations
(quartic anharmonicity angular momentum model of anharmonic vib-
ration, QAAM), the middle line shows an experimental data and the
lower line corresponds to IBA calculation (13). In the IBA-case para-
meters C,;, C, and C4 were fitted by the least square method for each
isotope independently.

N
Fig.3 shows the mean square deviations %— 2 (RI"—Rf**Y as functi-
i oi=1

on of neutron number for QAAM and IBA calculations. For all isoto-
pes except '®Pd and '%°Pd the one-parameter QAAM-description gives
better agreement than the three-parameter IBA-fit. One should note
that there is only few levels known in '°°Pd. At Fig.4 we show values
of fitted parameters for two versions. Obviously, the QAAM-parameter
o is a quite regular function of the shell occupation. As we have menti-
oned above, the similar behavior of ¢ exists almost in all nuclei except
magic ones.

7. Allowed quadrupole transitions

To calculate the transition probabilities one need to know the wave
functions of stationary states. In the same approximation as for energi-

es (9) one can express these functions |v f,J, M) as expansions over
standart independent phonon states | v, n,J, M),,

fo,n,J,M)= X Ahnlo,m, I, M) (14)

where overlap coefficients are

o _ . /T(n+v+5/2)T(m+v+5/2)
AJ’IH‘!_ i e :r.r+5l,-"2 n+m
n m![L(v+5/2)] C0F e TR
B3]
XF(=m=mot oy ) 5

where F is a gypergeometric function and

Qy= § ¥
we+ 1 wy+ 1

(16)



Then one have to take the harmonic approximation matrix elements
and to sum very rapidly convergent series with coefficients (15).

It is easy to show that the main contributions to the E2-transition
operator  have the same operator structure as 84 /8Q,. In our Hamil-
tonian H, (3) we have neglected odd-order anharmonic effects. There-
fore it will self-consistent to consider enhanced (allowed in the harmo-
nic approximation) E2-transitions only. Taking into account angular
momentum effects (12) we have to postulate a phenomenoclogical
two-parameter E2-operator

Que i+ (A H2)od ), + ([, 114, (17)

Then the transition probabilities (ANz=1) between the lowest states
are

14% 3 .
B(E2: 27 -0 =K, |1+ S8 s JE i , (18)-
( ; t) y [ lfg(mu+(111) 2 DJ
18% 7 2 :
B(E2: 4T -2 =2K, |1+ - + - kW 3 (19)
( 1 1) IH V5 (m,+m2) {3 lJ
18%
B(E2: 25 ) =9k 114 . {20
( 2 1) 1] P , )

B(E2: 0F —21) = f}(f@ma)ﬂ”x

5 28 1—5e/8 /\/3
—_—— 14+ —z |k 21
><:[1 4E+y’_ﬂln+m: L+ E) ‘"uj (21)
where
RN L (22)
WDy {l];r+{l]u+1 } : Wy '

Table 3 shows the exper-imental data ({27, 7] and references there-
in) for relative probabilities (19—20) in isotopes "2—!10p(
B(EZ; It —~27)

B(E2; 27 — 07 )

B,= (23)

in units of one-phonon probabilities (18). Those are compared with
corresponding model predictions. Data are reproduced reasonably well
with parameters x and & changing smoothly from one isotope to anot-

10

%

her. Parameter % is actually constant and values » and k are in rough

gfeement with the estimate from 8H/8Q,,. Let us outline that we car-
ried out all calculations in the strong cuuplmg limit (asymptotical ap-
proximation with respect to the quartic anharmonicity constant A; as a
result A drops out from formulae. Refusing this approximation one ac-
quires an additional parameter. But it is hardly worthwhile to make
such a complication without taking into account cubic anharmonic ef-
fects simultaneously. Latter are necessary to describe forbidden
E2-transitions, mean values of the quadrupole momentum [12] and
MI-transitions.

Here we did not try to present an exact calculation for the complete
set of data. We would like rather to demonstrate that moving along the
classical phenomenological path and using the microscopic grounds to
extract the main anharmonic effects one can understand general
trends and stress qualitative regularities distinctly. Certaintly the total
description of collective quadrupole motion in soft spherical nuclei co-
uld be achieved by the consistent microscopic theory only.
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Table

1

R; | H i "%pd 192pg R;—R}’

o g~ (exp) i (exp) o= TIEy
4 2 2.13 2.09 2.99 0.010
3 3.29 3.26 3.79 0.013
4 4.49 4.50 5.41 0.013
10 ] 5.82 5.81 7.17 0.012
12 6 7.16 - 9.08 0.012
14 7 8.58 8.58 11.03 0.011
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Table 2

7 98 100 102 104 106 1038 10
| 2 3 4 5 6 i A
e 3.85 3.89 3.89 3.99
B 3.49 3. 73: 3.3 3.93"

3.81 3.70 J.44 3.99
o 2.55 2.55 2.55 2 55 @b
B 2.86 2.40 2.22 2.43 2.53
241 2.40 2.26 2.08 2.45
” 3.26 3.26 3.26 3.6 3.26
A 298, | 323 | 333 3.03 3.13
3.23 3.34 3.38 3.02 3.20
;- 7.47
7.42
7.58
;{_ 5.47
5.51
¥ 74
+ 495 - 5.04
7 4.99, 5.39
5.03 L
i 3.51 3.62 ST
X 3.84 3.77 3.74
3.35 3.55 3.562
Y+ 3.96 341 | 344 3.47 3.30 3
; : . .54
9 3.55 - 3.80 3.28 3.04 3.08 3.24
b B2 3.28 3.41 3.45 3.19 3.34

14

2t

1 2 3 4 b i '} 8
5 2.09 2.17 2.18 220 | 2.2 2.23
X 2.39 2.76 2.4] 2.20 2.15 2.18
2.07 2.06 2.09 2.10 1.95 2.00
14_._ 8.58 11.18
v 8.58 11.18;
8.84 11.67
12 + 10T 9.10 9.99
Y 7.16 9.09 9.98;
6.96 8.78 10.13
l O + 5.81 7.47 7.45 7.79 8.34
Y 5.82 7.18 7.24 i 8.38
5.64 6.85 52 7.75 8.45
& 4.16 4.50 5.39 5.57 5.80 6.16
y 4.2 4.49 5.42 5.80 5.79 6.14
4.14 4.38 5.11 5.51 5.65 6.07
+ 3.06 3.26 3.78 3.89 4.02 4.06 4.23
Y 3.05 3.29 3.79 4.05 4.06 4.08 4.21
3.08 3.19 3.56 3.76 3.83 4,07 4.04
i3 200 - 2.09 2.33 2.39 2.45 2.47 2.55
Y 1.86 213 2.29 2.38 2.40 2.42 2.46
2.04 2.06 2.19 2.25 2.28 2.36 2.35
Commenis to tables
Table 2. Low-lying collective levels of Pd isotopes (in each triplet

the middle value is experimental one [23], levels a, b and ¢
corresponds to Refs [24], [25] and [26] respectively; the
upper value is obtained from our formulae (9—12) and the
lower one from the IBA-fit (13)). There are some cases
(marked with asterisks) where we have chosen for compari-
son levels which agree with our systematics. For example,
other candidates known in '°°Pd and ''°Pd have Ry;=3.05
and 3.25 correspondingly being probably of noncollective
nature. - :
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Table 3.

A i Z B TR e e
102 1.63 0.43 1.73 1.35 0.15 |—0.25(0.005
1.24(62) 1.13(62)
104 1.46 0.81 1.80 1.45 0.35 |—0.2010.005
1.77 1.10 0.73 1.88 1.6 | 0.62 |—0.14 | 0.005
106 | 1.53(17) 1.55 0.63
1.60(30)
1.92 1.70 0.92 1.95 1.65 0.95 |—0.07 {0.005
108 | 1.84(18) 1.8(4) 0.9(2)
1.9(3) 0.87(17)
1.80 1.0b 0.67 |.87 1.54 0.58 |—0.15]0.005
110 | 1.68(17) 1.25 0.57 (15)
1.80(37) 0.63(9) |
Table 3. Relative reduced transition probabilities p,= BE2i /"~ >27")
B(EZ; 2T =07)

from two-phonon states J =0, 2, 4 for '"7"'°Pd isotopes: co-
lumns 2, 3 and 4—experimental data (upper value from
Ref.[7] and lower one from Ref.[27]); columns 5, 6 and
7—calculated values according eqs (18—21); columns 8
and 9—adopted values of parameters % and ko,.
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Fig.l. The energy parameter w =0 (E;—E;) keV for soit spherical nuclei Ru, Pd and Cd
as a function of the neutron number.
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Fig.2. The energy parameter w =0 (E,—E;) keV for transitional and deformed nuclei
Ne, Sm, Gd and Dy as a function of neutron number.
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