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ABSTRACT

Economical numerical method for evaluation of relati-

vistic quark propagators in arbitrary external gauge fi-

eld is developed. It is based on Fock—Schwinger proper

time formalism and Feynman path integral representati-

on. The method is tested in the case of abelian homoge-

neous external field by comparison with Schwinger
an alytical solution.

© Hucruryr adepuod ¢uauku CO AH CCCP, 1984

i. INTRODUCTION

Evaluation of hadron properties (masses, decay constants, etc.) by
the use of corresponding vacuum current-current correlators is now
widely used (see, e.g., the QCD sum rules [1, 2] and numerical esti-
mates on the lattice [3]). An important ingredient of such studies is
the calculation of quark/gluon propagation in some rather nontrivial
vacuum fields.

The main problem here is, of course, the long-distance structure of
vacuum fields, including that responsible for the confinement mecha-
nism. There are known many attempts to attack it, basing on phenome-
nological treatment [4—6] and direct lattice simulation {7, 8]. In par-
ticular, numerical study of the lattice QCD demonstrates explicitly the
existence of the confinement phenomenon [7] and confirms the possibi-

“lity to reproduce main features of hadronic spectrum (3], starting di-

rectly from the first principles of the theory. However, these attempts
are only first steps towards the real understanding.

This paper is devoted to another, more technical problem of calcu-
lation of the quark propagation in arbitrary external (vacuum) field.
Existing analytical estimates (see, e.g. [1, 2] and references therein)
are reliable only at small enough distances, where bath the perturbati-
on theory and operator expansion technique are applicable due to the
asymptotic freedom. Generally speaking, the knowledge of correlators
at small distances is not sufficient, and in fact one needs to calculate
them up to distances comparable with hadronic scale (order of 1 fer-
mi). Since this problem has no explicit small parameter, the only
known hopefull way to treat it remains its numerical simulation.

Here a new numerical method for the calculation of quark propa-
gators in arbitrary external gauge field is developed. As a result, kno-
wing the propagator one can calculate in the same external field many
interesting related quantities, like current-current correlators, effective
action {10, 11] (fermion determinant), etc. In some respects our met-
hod is a continuous analog of the lattice hoping parameter expansion
[12], but instead of 4-dim. lattice in the space-time it uses only one dis-
cretized variable, being Fock—Schwiger proper time [13, 10]. In this
methodical paper we concentrate on the derivation of the method,-and
study its main properties using exactly solvable problem of the relati-
vistic particle propagation in homogeneous abelian external field, whi-
le its applications to QCD will be published elsewhere.

In sect.2 Fock—Schwinger proper time parametrization for quark
propagator [10, 13] is used, which makes the relativistic problem simi-
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lar to a well studied in the literature [14] nonrelativistic one. Corres-
ponding Feynman path integral representation completes this section,
while some useful detailes of numerical calculation of the path integral
are collected in sect.3. Comparison of numerical results with the exact
analytical solution known [10] for the case of homogeneous abelian fi-
eld is given in sect.4.

2. FEYNMAN PATH REPRESENTATIONS FOR QUARK PROPAGATOR
AND EFFECTIVE ACTION

Let us start with some notations. Below we deal with Euclidean qu-
antities related with Minkowsky ones in a usual way:

Xm=2xY, Vm =—iyi) (m=1, 2, 3)
xa=ix™, ?4_?.5“} (2.1)

and the commutation relation between momentum and coordinate ope-
rators:

[ﬁm E1|.|'] :i'ﬁpw : {2.2}

are assumed. Following to Schwinger [10] we introdice the basis of
eigenstates for coordinate operator x:

Xl x) =x,l x) (2.3)

and come to Euclidean version of the proper time parametrization of
the spinor particle propagator:

G(x, y,A)= (x| |y = {xI(#+ A +im)

T e 1 e
p+A—im G+AP+m® 7~

= (1 + A Jrurim ]S ds ol exp (— [0+ 47+ m7lslyy (24)
M 0

Thus the whole problem is reduced to calculation of the matrix
U(x, y, s; A)= (x| exp {—[(F +4)+ m’]s}ly) (2.5)

which can be treated as a transition amplitude from point y to point x

during the interval of (1magmary) «time» s, describing the propagati-

on of some fictive particle in four-dimensional space. The correspon-
ding Hamiltonian is

s (ﬂ+¢f)2+m2*(ﬂp+:4“f“)2 —quﬂﬁvf“ (2.6)

where
Gﬁv:auﬂﬁ_avA;'i'fchﬂA:; (ZT)

so one can see the analogy with the nonrelativistic problem of propaga-
tion of a particle having a mass equal to 1/2 and moving in 4-dim. spa-
ce in the external time-independent (nonabelian) field A (x). Using this
analogy the amplitude U(x, y, s, A) can be easily expressed through
the known [14] Feynman path integral, which can be calculated at le-
ast numerically using a well elaborated Monte Carlo methods.

In order to obtain a Feynman path representation for the matrix
Uy, x, s, A) let us consider eq. (2.5) for small time slice s—0. Expan-
ding the exponent up to terms of second order in A, and sandwiching
the operators after their rearrangement by the full set of momentum ei-
genstates § lp> (pl=1 we have:

Ux, y,s; A)= exp (—m?®s)- {1 —
=5 ;[‘“5' (x10uAu+Ailp) {pl exp (—p*s)ly) —

—2s{x Aulp) (plps exp (—p*s)ly) +

+ 25*(xl Ay Ay +iduAilp) (plpupy exp (—p2s)ly) 1} : (2.8)
Making some calculations and exponentiating the result, for small s
we obtain:

Ulx,y,s;, A)=

i
~ (4ns)?

T
5 { S %LjLMﬂf‘(r—y],— = o G } (2.9)

where the fields are taken at the central point:
Ap Guv=Au Gz 1y (2.10)

Now consider the case of large number N of subsequent small
steps As in time such that As- N=s,. In the limit N—o0 but fixed time
interval s, we come to a required Feynman path integral:

Z(sg)=x

Ulx, y,s; A)=C(s,) S Dz[s]exp{— S ds L(z, 2)} (2.11)
2(0) =y
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where matrix «lagrangian» is as follows

2
L(z,2)= T A2+ —;—u“vﬁ,w-i-mﬂ (2.12)

and C(sy) is some (infinite) normalization factor. For any finite N:

cN(su)=( - )” (2.13)

4ns,

Substituting (2.11) into (2.4) we have for spinor propagator:
G(x,y; A)= [(iai +Au(x})w +='n’-"]><
Xp

2(5,)=x
X S ds, C(sg) s Dz[s] exp {— S ds L(z, 2)} (2.14)

2(0) =y

In the case of scalar particle the propagator takes a more simple
form:

2{ss)=x
D(x,y; A)= S d.su{.‘(s,,){gl Dz[s] exp{— S ds Lz, 2)} (2.15)
)=y
where
Lec(z, 2)= "'"Tz —iA 2+ m? (2.16)

coincides exactly with a lagrange function for some fictive scalar par-
ticle moving in 5-dimensional space-time.

Now let us write down the path integral representation for the ef-
fective action coming from the interaction of the polarized quark vacu-
um with the external field [10, 11]:

8Sepj =—{ju) -84, (2.17)
which is also related to the functional determinant of the operators

K{tc} - {i6+.ﬂ]ﬂ+m“

K — (ig + 4)—im | (2.18)

where S’ ="'/, Indet K*9 and S4f’ = — In det K for the scalar and
6

spinor case respectively. Following to Schwinger [10] we see, that the
effective action is given by corresponding integration of the trace of the
same evolution matrix U(x, x, s, A):

Sur (m; A)= % Sd* Sﬁ iU s A) . - (2.19)

and with eq. (2.11) we come to a needed path representation. In order
to subtract infinities we calculate below a regularized quantity:

Seji = [Seif(m, A)—Sef(m, 0)] —[Ses(M, A)—S.4(M, 0)] (2.20)

where M is the Pauli—Villars mass regulator.

3. NUMERICAL EVALUATION OF PATH INTEGRALS

Let us outline now our technique on a particular example of a pro-
pagator evaluation because the evaluation of other quantities (cur-
rent-current correlators, effective actions, etc.) is quite analogous.

For evaluation of eqs (2.14—15) we need to sum over all the paths
connecting the points x, y and corresponding to different proper time
intervals s,. In order to do this we simulate an ensemble of paths
{x[s]l,} with weights corresponding to free (A=0) propagation of
scalar particle:

Clso) exp{— § ds Ly(z, 2)} (3.1)
W (x[s],)= e

where the normalization factor C(s,) coinsides with that in eq. (2.11)
and
Lale Yo %é% m? (3:2)

With this path ensemble the propagator (2.14) can be calculated as an
average

1
G(x, 4, A)= + Z ([ ai +Au(r}]?u+£m)x
path Xu
{paths}
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s{ exp[— § ds(L—Lo)]-Dix, y; A=0) (3.3)
i)

However such a choice of the path ensemble seems to be a not opti-
mal one to saturate the path integral (2.11), in practice this loss is
well compensated by a very high speed of simulation of paths with a
particular weight (3.1).

Let us describe the simulation procedure in more detailes. First of
all, the time interval s, is split into N steps As=s,/N and at each step
eq. (2.10) is applied. Each path is now characterized by a set of num-
bers, (21, ...,2y,,) with z1=y, and z,_,=x, and by the proper time va-
lue s, The corresponding weight (3.1) takes the form:

N \2N N2 3.4
W(zy, - 2y, 5 So) o< (411_5-3) exXp {—Elg (2:+|“3J —m’s, } (34)

Now a transformation to new variables

Ei=[2i—y— (E;l}(x‘"y)]' ot (a0
with distribution

Wi b S0 = e B Wi, o 2y s

o () on 5B )

xew [~ %3 @27} (36)

allows to factorize the distributions for §; and s,. Further Fourier tran-
sformation

I N = ' in[gx(i—1)]

g= 2
N
g2 - 3.7)

factorizes the distributions over all the random variables completely:

4

Wi(a,,---; by, -5 5¢) = Ws(s,)- h 11 Wilay, ) We(by.r) : (3.8)
> k=] p=I
where
i Lo (Lot ooy e
and
Wi(a) o exp{—NsinE(%_)mz} (3.10)

so the whole random path can be simulated directly. Let us remind,
that more general but indirect iteration methods, like a popular Metro-
polis algorithm [15], require sometimes a rather large number of «em-
pty» iterations in order to obtain a new independent path. Obviously,
our direct way of path simulation takes essentially smaller computer
time.

Completing this section let us concern some specifics in the practi-
cal calculation of spinor propagator (2.4), (2.14), which can be writ-
ten as

G(x,.y; A)= S ds, PU(x, y,54 A) : (3.11)
- : :
where the projection operator P having a form
P=(p+A +im)=(iv,0,+ Auyut®+im) (3.12)

contains a differentiation over the end point x of the path. For our
N -point path

Ll Lt ) }'U(x, R Uiy A0 e AR (3.13)
ainsg
Acting by P on U gives
PU= Z [ 1 32)“7"“ +im+O(N- 'fﬂ)]u - e
{paths}

Note that for each given path the first term in the brackets describes

the endpoint velocity and diverges at large-N limit as N"? since

9
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As=s¢/N and | x—z,| ~N7"2. 5}/% for a random walk in z,. Obviously,
a simple averaging over paths cancels this divergency but requires a
rather large ensemble of paths growing with N at least proportionally
to N. However, the requirement on the statistics can be essentially re-
duced, if one averages the velocity along the path. In fact

PU=UP (3.15)

in continium limit, and one should take

N
G(x, y, A)= Z [# Z B U PUG L+
)

{paths =2

1
‘;_,ﬁ_(pul...yﬁ.}hgl...yﬁp}] (3.16)

to solve this problem completely.
4. NUMERICAL STUDY OF A CASE OF HOMOGENEOUS ABELIAN FIELD

In order to understand how well the method works, where and why
it fails, let us test it in the well known 110, 16] case of homogeneous
abelian field. Except for the plane wave case, it is the only known one
which allows an exact analytical solution [10]. Below, starting with a
brief but useful discussion of its properties, we concern some problem
of our numerical method and complete the section by the comparison of
our numerical results with the exact analytical ones.

4.1. SOME PROPERTIES OF THE EXACT ANALYTICAL SOLUTION

The general expression for the evolution matrix defined by eqs
(2.5), (2.11) is known to be [10]:

U= G O { —sm*— S G [F cth (Pl (s— )y 20l }x
X exp {— % tr In [(Fs)~'sh (Fs]]} expf{—i §dz,,A,.(z)} (4.1)
y

where F,, is the field stress tensor and integral over z is taken along
the straight line connecting the points x and y.
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For simplicity we consider below only the case of constant Eucledi-
an electric field A= (0, 0, 0, E-x;) and calculate the propagator for
(x—y) = (0, 0, 0, t). Substituting (4.1) into (2.14) we come to the fol-

. lowing expression for a spinor particle case:

G(t, E)=\ dsd(t, s, E)-W(t, s, E) (4.2)
0
where
Coa =g VRS () Es
i 5 L) (4;:1;5)2“1’{ 2% sh(Es) } sh (Es) £
; tE 1 :
d(t, s, E)=i [m ch (Es)—m?m +iy,y,m sh (Es}] (4.4)

_In the case of scalar particle one has d =1.

Let us start the discussion with some well known limits of this so-
lution. In case of weak enough field the main contribution in eq. (4.2)
comes from Es<1. In this limit eqs (4.3), (4.4) take a more simple
form:

2 2.2
Wi(t, s, E)~ exp { —m?s— ?:—S- (l + E; ) } (4.5)
d(f,s,E)zim-{l—n;Esf} (4.6)

and the integral in eq. (4.3) can be taken analytically and expressed -
via Bessel functions. We consider however only its further limits:

A. The nonrelativistic limit (m#>>1). Taking the integral by a sad-
dle point method and keeping the leading contribution only, one comes
in the scalar particle case to the well known result [14]:

1/2 2 : i
D(t, E)= Wexp (—mt— % (4.7)

while in the spinor particle case one has an extra factor im (1—yy):

im¥2(1—v,) E}
i )= - EY
5 - 2 2ty “p( o 24m) Heee)

The condition Es<1 implies here that Ef/2m<1. Note, that the main
contribution comes from s~{/2m, s> the fifth time s (the «proper ti-
me») is simply proportional to the usual time variable: the dominating
paths are very close to the classical one.
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B. The ultrarelativistic limit (mi<1). The dominant contribution
comes from paths with s~ ¢, which are in fact nothing but some ran-
dom walk from point x =0 to x=¢ inside a region of size {. For the sca-
lar particle propagation we have:

Dtt, E)= W%EF exp { t; (m + ‘E:; ) } (4.8)

while the spinor propagator has a slightly different behaviour:

G(t, E)=—2 ( 2‘1 )m (;';33 exp { = —:-%(m% E:; ) } (4.9)

The above condition Es<1 implies here that Eff< 1.

Now we consider the case of strong field limit (Es=1). Let us
stress, that although the integration over s in eq. (4.2) is not so trivial
in this limit, the integrand s a well behaved function, and the result
can be easily computed at least numerically. Nevertheless, in this limit
some rather unexpected problem arises in the spinor case, when we
calculate the original path integral (2.11) by direct numerical summa-
tion over the paths. Let us discuss it in more detail. Indeed, one can see
from eqs (2.11—12) that for large s the individual contribution of each
path can be estimated as

lim : exp {—mﬁs—-——— Sdé'(iz-—ff-l \ ~
Jm Gy 9 IkE th
-~;1§exp(—mﬂs+£s) , (4.10)

so for E>m? it grows exponentially with s. Aithough the phase of this
contribution changes rapidly from path to path and the sum over the
paths at any fixed large s must be in fact finite and small, the statistics
needed to reach it is enormous. Moreover, the larger s is, the larger

statistics is needed, while the net contribution of corresponding paths
into the final answer becomes quite unessential. Let us stress, that this
problem is inherent to the spinor case, while in the scalar case all the
individual path contributions are always order of unity.

In order to overcome this problem we suppress «too lengthy» paths
(corresponding to too large s) introducing by hand a cut-off s., so the
summation goes over the paths with s <s.. Now consider the conditions
to ensure the dependence on the cut-off value to be small.

The integrand in eq. (4.2) has in the spinor case two pieces with

12

rather different behaviour in the large-s limit:

d- Ws-—-—un ::I“EEE exp { - F—E —(m?® +2E)s}
9
+i(1 +i~f,?¢)@£ﬂ)§§exp (—%-—mis) (4.11)

one of them fails exponentially with a slope (m?+ 2E), while the slope
of another piece is only m® The main contribution in integration of the
former piece comes from

Es~ arc sh (Et/2(m*+ 2E) ).

The requirement, that corresponding individual path contributions
€q.(4.10) must be order of unity in small mass limit implies that
Et*/8<1.

The latter p:ece is potentially dangerous, since its integration invol-
ves s~ 1/m® which in the small mass case correspond to large indivi-
dual path contributions because of Es>>1. Introducing a cut-off in s,
we suppress as well the contribution of this piece. Obviously, the un-

certainty introduced by cut-off is maximal for m*~E and is again ines-

sential in the massless limit for those propagator components and for
all the related quantities, which remain nonzero in this limit.

Analytical answer for the effective action can be obtained by sub-
stituting eq. (4.1) into eq. (2.19). The regularized expression (see
eq.(2.20) ) has a simple form:

I mds ST E
Shi= g V™ =) (s —1)
0

(scalar) (4.12)

2(4m)* sh (Es)
2 ¢ e e e (EsIES :
-'.'neﬁ_(4 ) S-;T( —e ™ )(W_l) (spinor} (4.13)

Subtracting the charge renormalization [10] one comes to the Heisen-
berg—Euler lagrangian:

1 ds —m¥s — Mg Es E?s?

Ly_g= 2(4:“)2 S (e —e )( sh (Es) —1+ 5 ) (scalar) (4.14)
2 ds, —ms _—m%sy{ Esch{Es) Eiss :

Ly—g= (4“)2 S (e g )(W_l-_ 3 ) (spinor) (4.15)

Concerning here the above considered problem of exponentially lar-
13



ge «too lengthy» path contributions, which arises again in the spinor
particle case in the strong field limit, we see, that the effective action
integral (4.13) is saturated by s~ 1/E, and a reasonable cut-off of or-
der 1/E is possible. Moreover, an additional interesting consequence of
this observation is, that in the limit E/m®> | the result is insensitive to
particle mass m, since m’s<1, and up to terms of order O (m*/E) it co-
incides with the massless limit. Thus the calculation in the massless
particle case is possible as well. This observation is valid also in the
scalar particle case.

Unfortunately, it is not the case for Heisenberg—Euler lagrangian
(4.15), which is essentially contributed by s~1/m2>1/E, or by paths
with individual contributions being too large. In the strong field limit a
reasonable choice of cut-off is impossible, and our method fails.

4.2. NUMERICAL RESULTS

Thg gauge invariant quantities we have studied numerically are
two-point current-current correlators, which are often consider in the
context of QCD sum rules [1, 2]. Below we compute the quantities:

Ks=i (js(t) js(0)) s =1D(t, E)? (4.16)

(scalar currents, scalar particles), and

Ky=—i{ju(®) ji (0)) g =Sp {yu G(t, E)y,G(—t, E)} (4.17)
(vector current, spinor particles). To exclude their uninteresting
strong but trivial variation in many orders of magnitude, below we
consider the ratios of of correlators to the corresponding free ones, ta-
ken with absence of external field: .

Rsy=Kgsy(t, E)/Ksy (t, E=0).

In order to make the situation being closer to reality, we take the fi-
eld strength E=0.5 GeV?, which implies |

2 [Fwl?=2E"=0.5 GeV* (4.18)

in correspondence with the known phenomenological estimate for the
gluon vacuum condensate [2]:

2 ((gG%)~05 GeV* (4.19)
Bov.a :
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The dependence of results on the number N of steps in proper time
s is shown in Fig.1, where the correlators are caiculated at the typical
in the hadron world distance =3 GeV~' or 0.6 fm and the mass cor-
responds to that of charmed quarks. It is seen that a good agreement is
provided already by N=8—10.

Comparison of numerical results with the exact analytical ones qb-
tained by substituting eqs (4.2—4) into eqs (4.16—17) is given in
Fig.2. Typical statistics is here about 500 and 350 paths per point in
scalar and spinor case respectively, which corresponds to CPU time
order of a few minutes at the middle power computer (about 5- 105
op/sec). All the results correspond to N =10. An interesting feature is
seen, that the nonrelativistic estimate (given by eq. (4.7)) is almost co-
inciding with the relativistic one in the scalar case but deviates consi-
derably from it in the spinor case.

The results for lighter quarks are shown in Fig.3. The dependence
of correlator ratios on the mass of quark is well reproduced up to zero
mass for both the scalar and spinor particles. Some small but systema-
tic deviation from the analytical curve, which is seen in the scalar case
at N=10, disappears if one takes N=20. In the calculations with spi-
nor particles we use the cut-off values s,=4, 7 GeV~2 To study the
sensitivily to s, we plot the analytical curves with the same cut-offs, as
well as that with s,= co. We see that at s.>7 GeV 2 the results are in-
sensitive to s, and corresponding uncertainty does not exceed several
per cent

Now let us turn to the results of the effective action calculations
(Figs 4, 5). A reasonable accuracy for effective action and Heisen-
berg—Euler lagrangian is reached at N=15—20. Typical number of
paths is taken about 1000 (scalar case) and 500 (spinor case). Nice re-
sults are obtained in the scalar case (Fig.4), which has in principle no
problems in the strong field limit £/m*>1 too. In the spinor case
(Fig.5) there is no problem as well in calculation of the effective acti-
on, i one takes the corresponding cut-off value inside some «stability
regions:

sc=(2—8) /E.

For larger values of s. the method fails, while for lower ones the re-
sults are strongly dependent on s, (Fig.6). In contrast, calculations of
the Heisenberg—Euler lagrangian (in spinor case) appear to be not so
successful, since the corresponding stability region for this quantity is
more narrow, and in the strong field limit (E/m*>10—20) it disappe-
ars at all (see Fig.6).
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5. SUMMARY AND DISCUSSION

Let us summarize the main points of the paper. The method, develo-
ped here allows to calculate propagators (and other related quantiti-
es) for scalar and spinor particles in arbitrary external gauge field. It
based on the path integral representation and contains only one discre-
tized variable, Fock—Schwinger «proper times. Simple algorithm of
path simulation takes CPU time which is negligible in comparison with
the evaluation of an individual path contribution. :

The method shows high efficiency, especially for the scalar case. In
the spinor case an additional suppression of too lengthy (in proper ti-
me) paths is needed, for their individual contributions are divergent. A
reasonable cut-off is possible in computations of many quantities of in-
terest, but in some cases, where «too lengthy» paths appears to be es-

sential (e.g., in Heisenberg—Euler lagrangian calculations in the
strong field limit), the method fails.

Our method allows also a straightforward generalization for gluon
case. This work is now in progress, and its applications to related

problems of vacuum structure (instanton-instanton interaction, etc.)
are under study.

The author is much indebted to E.V. Shuryak for numerous consi-
derations, attention and support.
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Fig.l. The dependence of the ratio R=K (¢, E)/ K{t, 0) on the number of steps in pro-
per time. The lines show the exact analytical results. The open and closed points
correspond to scalar and spinor cases respectively.
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Fig.2. a) The scalar current-current correlator ratio versus . The solid line corres-
ponds fo exact analytical result, while the dotted one is a nonrelatistic estimate

b) The same, but in spinor case.

19




moel ' 100
, 1 0

Fig.3. a) The scalar current-current correlator ratio versus quark mass m. The solid li-
ne corresponds to exact analytical resull. b) The same, but in spinor case. Paints
and crosses correspond to cut-off s =7 and 4 GeV~7? respectively. The lines cor-

respond to the analytical results with the indicated cut-off.

Fig.4. The effective action Sij; and the Euler —Heisenberg lagrangian Ly ; as a functi-
on of ratio-E/m* (scalar case).
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Fig.b. The same as in Fig.4, but in the spinor case.
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i Fig.6. The dependence of the effective action S and the Euler—Heisenberg lagrangian
Ly ¢ on the choice of s.. The shaded area shows the region, where the method
fails. ;
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