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Abatreaes

The nondipole radiation of electrons is considered for
any shape of interplane potentisl. A concrete analysis and
comparison with the radiation of positrons have been carried
out for a potential of the 'inverse parabola' type. It is
shown that for description of the radiation of particles with
energy £ < 10 GeV in the region of a maximum of the spectral
distribution it is possible to take into account a few first
harmonics at motion only. This substantially simplifies the
calculation, eapecially for the potentials of complex shape.
The diagrams which illustrate the radiation spectrum as &
function of the angular width and of the direction of beam
incidence on a thin crystal, have been deplected. A detailed
comparison of the results with the experimental data availab-
le has been made.

]

1. Introduction

Tﬁa present paper is deal® with the nendipole radiation
of electrons at planar channeling. If the transverse momentum
of a radiating particle is p,<<im, then one can use the dipo-
le approximation; but if PL. =AM then the radiation beco-
mes significantly nondipole. Meking allowence for the fact
that P ~E ﬁ;( ¢ (m) is the ener (mass) of a particle, . ﬁ'c
ig the Lindhard angle: v, = \2U,/pand U, 1is the depth of a
potential well), we have Ps [ ~ \{5?;, where f“ is the para-
meter introduced in /1/: :

gn = 2E 1'{.; €11)
; m

So, at Po=d (E X &Y = 'mi/?uﬂ) the rediation gets nondipo-
le. Por the (110) plane, End 5.2 GeV in Si) ( U, = 25 eV
and £,.d=0.93 GeV in W (U, = 140 eV). The planar-channe-
ling radiation in the nondipole region has been discussed in
Refs. /1-6/. _

The effect under study is, in fact, a manifestation of the
general mechanism of radiation at quasiperiodic motion (perio=-
dic in the frame moving with the particle's average velocity).
Tt is this mechenism which determines radiation in undulators
and in the field of a monochromatic plane'wave. A theory of
radiation during guasiperiodic motion, including the quantum
region where the radiation recoil should be taken into consi-
deration, has been developed by the authors in /1,7/s

In applica;tian to the channeling radiation problem, the
radiation characteristics, calculated in /1,7/, are to be ave-
raged over the states with different transverse energy £, :

2
P (3e2)

where 'H(’xﬁ {g the interplane potentisl, taking into account
the dependence of the motion parameters on Eie

The motion of electrons in any adequate potentiel of the
crystael plenes is & non-harmonic one. This circumstance signi-
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ficantly complicates the solution of the radiation problem in
comparison with the case of positrons for which the oscilla~-
tor potential can be employed in the nondipole region (this
question has been discussed in /5/), The latter enables the
analytical stage in calculations to be substantially edvanced.
The redistion from positrons in the nondipole region has been
analysed in the suthors' paper /5/ (see /4,6/ as well) which
contains also a comparison with experiments. For elecirons, s
detailed consideration is made in the preasent paper.

2. Description of the radiation for arbitrary potential
at a given transverse emergy

With an arbitrary potential of the planar channeling, for
the radiation spectrum at & given value of £, we have

i _ oo Tl (a1 29 (3e-- gty ]

dw — (@xg)® L t-i0 y
- @xp {-L k_,[?.t G{-{(f‘%‘) 4 S.,_.‘h? ({(ﬁ;ﬂ-—(f)}—
& (Sde g(e+2)) 1}

using formula (4.2) of Ref. /7/. In the above formule

‘Ee.s:[m; d‘.:{’-ta;r; ) is the photon frequency, £ —=
A WE. ¢ (s)s the motion frequency; §(§)=

forgt £-0 ) %E) quency; ¢(8)= X [% () -S|+
the x-coordinate is perpendicular to the planes forming a
channel; < ... stands for an average value ; Q (W) =
44 QE/E_EL (¢-); end the nondipoleness parameter is =2<3.2>-
Formula (2.1) describes the radiation at any values of the pa-
rameter ©os , including the quantum region when the radiation
recoil needs to be taken into account /1/. It should bear in
mind that formula (2.1), as formula (4.2) in /7/, is straight-
forwardly derived from the results of Ref. /8/ which presents
a quantum theory of the interaction between charged particles
and a field of the plane electromaegnetic wave. The total radiar
tion probebility is expressed via an imaginary part of the
mass operstor of a particle in the fisld of wave (see formule
(3.36) in /8/). The frequency-differential radiation probabi-
lity (spectrum) is possible to obtain using formula (3.31) of
the cited publication. In this case, we are to have in mind

(2.1)

1--4_-.—

thet the varisble ' W ' is related, DYy virtue of eq. (2.21)
in /8/, to the fourth momentum of the emitted photon k

WA =(:£!<}[(zp}, where 2€¢ end P  are the four-momenta of the
wave (of the particle). The situation under discussion corres-
ponds to that in which a wave propagating towards an ulfrare-
lativistic particle whose average velocity is directed along
the g-gxis:

E+P3

T
=

I

&)
£ {(2.2)

Omitting the integral over W 1In eq. (3.31), we have the ra-
diation probability, differential over ¢ , and multiplying
the result .by the ¢ , we obtain the radiation spectrum in the
wave field*. The radiation under qua.siperiodic motion coinci-
des, with a quasiclassic accuracy (the terms ~ 0J, ¢ ere neglec-
ted, @, is the frequency of motion), with thet in a field of
thg’ carraffonding ia.ve. nTha vector-potential of the latter is
e fex)= P(ﬁi}(}-—{p})&ﬂ:ﬁ}e is the particle charge.

1f we base ourselves on formula (3.10) . in Ref. /7/,
degeribing also the polarization properties of the radiation,
then we obtain, for ti:e radiation specirum an expression in the
form of a sum over harmonics:

dl _ ow iéfj)—(h— 31(_{-*% 3@*441:1 ,]a@\!;:@“ﬁ@'g)'

dw ~ @xy) w=
ty
_ Stchg c&(‘?‘h[—ﬁi a.(;fj (%(‘EQH%CH)?] exp {i (n- (2.3
;3 5 E&) i E { 9 |
) -ta) + 17 Sy (@}WO

where '3.:, is the Bessel function and (_?_i = {3 x<qi for the
rest of the notations see formula (2.1). Formulae (2.1) and
(2.3) are completely equivalent and describe the radiation from
both the electrons and positrons. To derive explicit expressims,
it is necessary to find Ui (@) ., i.e. to solve the problem
of one-dimensional motion. This is possible in any potential.

This procedure is permissible because no integration by
perts over the variable U has been made when deriving formule

€3.31)
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In what follows, we shall mseke s comparison between the
radiation of electrons and positroms. For the positron case,
a parabolic potential has been used in Ref. /5/, and for elect-
rons it corresponds to a 'inverse parabols' potential which
well describes the electron motion. For the more suitable po-
tentiel introduced !,n /10/, the expressions for ’U;: , derived
in Refs. /1,10/ should be used.

In the parsbolic ('inverse parabola' for electrons) poten-
tiel we have, from (2.3) for the radiation spectrum at a given

energy £, e i
o e G- D EIC - n D)
. (dt,dt, 'Jq(a\{gnzg( s - 2O+ L)) (9« *'%.3}- (2.4)

-J
e 228 (g~ Teos [n(hi-ts) + 2582 (221,
where =& /EE%J-:-':'(_%)' Glos 1is the &, =-independent fre-
quency of motion i . the parabolic potential: Glgg = 5—%’,: ’ d
ie the distance between planes forming the channcl, SmT/T“ s
T is the period of mtion,'T;s “.:-.E,"J’{/mas; index (-{',2) indica~
tes the dependence of the function on t, or tg . The exp-
licit expressions for the %(‘H ; L})@:) and % (+) functions
are given in Table I for £ >0 ; at t <O we have Y(=t)=Y(%)
: q{(—t =—q‘,(ﬂand %) =- ’?.@:"j : the Taeble also pre-
sents § = §() and \?CE") . The variable % is equal to
EJ,;'LLG ; index 'c' is for the particles in the channel (E{ﬂ
and index "me"is referred to the particles (Z>4) above the
barrier: the following notations have been introduced:
¢(7)= %'e“\%%\m A(Z)=arctin \i:?

With an increese of ¥ from O to 1 the motion period of
an electron in channel increases and above the barrier decrea-
ses monotonously end at Z>>|, T ¢o4[(Z ; in the vicinity
of the point Z = 1 the period T c¢o=tm|4-Z| . The parameter

(2) inoreases in the channel with growing & , attains a
maximum, 0.43 Po &t Z * 0.85, end then reduces tuhg. Abo-
ve the barrier, ?(3’} grows from 0, takes the value DOpay *}.*.Sﬂ.
:0.13 at E =~ 1.001, then decreases, and ?’En.‘z? fsz at

Z >> 1. This result coincides with that for the positiron
cage because \? ':'_'59(\141— <’lii.'9) fE‘rL highly above the barrier
end is independent of the charge sign efperticle. In general,

sith = >>4 the radiation does not depend of the sign of char-
ge (see, e.g., Section 4 in Ref. /1/), since in this limit the
result coincides with the Borm approximation. Recall (see

Ref. /9/) that the total eleciron radiation intensity in the
pﬂtenti'al u.nd:ar congideration is

L(? -=IEQHE+E (2.5)
o -g(g';
2.0
where T ,= ‘E-{-;ETE%, it decreases from 21 . at E =0 to O
at ® = 1, end then ipncreases, at £ > i, approaching T g5 =
= % e
Formulae (2.1), (2.3) and (2.4) may be uged for any \?g ‘
In case of s moderate nnnﬂipnle'nass ( €5 ~ 41 ), the condition
£< 4 is patisfied for the sbove-barrier electrons, .
abd it is possible to describe their radistion using the dipo-
le formulse which are considerably simpler (ef, /5/)« bt Do ~ 1,
the description of the radiation from electrons in the channel
cen be made significently simpler as well. The velocity f, (Lﬂ
(just as the function %@ﬂ ) in (2.1) can be expanded in Fou-
rier series

(9 = ’;: Ugp_4 co8 (@E‘ﬁ LS’)
Y = 3 ?ﬂiw Y(g) co8 (@E-1)

The values of "Lrgg-{ for appropriate potentials are given in
Refs. /1/ end /39/. The quantity Wgp , falls as the motion har-
E grows, end the corresponding radiation frequency shifts
4o the right. Thus, the contribution of the higher motion
harmonics to the region of a maximum of the regultant spec-
trum { & ~4 . ) proves fo be suppressed for two reasons: 1) we
have found ourselves on the left slope of the curve for a given
¢ emd 2) even in its maximum the harmonic contributes
much less as compared with the first harmonic at Z~4{ . Cor=-
respondingly, at %~ 1, for the purpose of describing the
radiation from channeled particles one can restrict oneself to
a few terms in (2.6). If we retain only the first term f,co @

in (2.6), then substituting an sppropriate %(Q},into (2.1) we

(2.6}

fonic
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are led to formulae (4.6) from Ref. /7/ , wherein the following
substitution should be made: O —@, = x 217 . We also pre-
sent here an expression for the spectrum with taking into
account also a small sddition cuntrihutad by the term Qfac053?
O{I e xa Fodt
d TRy _mt"*-O Et{ CAR G@)S’

(2.7)

(B@ =i T EY) + Hr 22 1"'3_ GG ] ;

where

G = 2a@)sint sinat (@) +< *J &)+ BBt —
- 95int sin 3t [3t) L€ T, (@) + i (6-1) {T{CE:“’ ]+ % (8Bt cottt~
~puint g3t 3Ol BE) —E-)NUG@yT, 7
b= f+$4ﬁ(ﬁi)8m9“f: %, =Xp G“‘*Jf 3'—“‘-3"-') Z, 2&;( ?‘\, g:

To make better the wnve:rgence of the 11‘11;&31'&1 in (2.7), ©
can uge the subtraction procedure desgecribed in /7/.

The presented epproach calls for a knowledge only of the
Fourier harmonics of velociiy and, hence, is applicable to the
deseription of radiation from both the elecirons and positrons
in any potential. We note that the dependence TC‘E;JS is taken
into account exactly and the quantity 4 is close to S)

. Since for electrons at Z —>4  the period T '(F)

tends to infinity in any adequate potential, the non-harmonici-
ty of motion will be largest at Z =>4 . So, in the 'inverse
parabola' potential, with Z = (0.3; 0.6 and 0.9) the U3 /7
is equal, correspondingly, to 0.13; 0.15 and 0.22 and U/, =
= (0.045; 0.056 and 0.089). However, because at Z—>4 the in-
tensity (2.5) [(®)»0, the rediation from the particles which |
have undergone a significant non-harmonic motion, may be neg-
lected at a finite population at Z — 1. Even in the case !
when the population in the channel is co g(}‘} (thin crystal,
the particles are uniformly distributed over the angle of inci-
dence W, € N ; very thick crystal) and L(2)£(2) = T,
at 24 , a fraction of particles in the vicinity of =4 is
small and their radiation lies within low frequencies.

3. Analysis of the radiation in thin crystals

Dechanneling in thin crystals mey be neglected by defini-
tion and the distribution over &€, is determined by the ini-
tiel conditions. If the incident beam is uniformly distributed
within the %'f %'f interval, then in the 'inverse parabola’
potential we have (see, €.g., formuls (A.4) in /1/)

AN _ V@) Vrye-2) p C (3.1)
d 2 2 (42— B

where %‘12 5 "“ii s i G*_r‘)%'c_&g Z) +<‘~ég+\]{+ﬁg 5:-’)

 N(2- ‘4'2‘1 s B =(gr{dryi-z ‘;3‘(@31—2) sl
S

The spectra aT { de , ava(;aged with aW/o[i-' {gsee formula
(3.1)), are presented in Pigs. 1-4 wherein the frequency is
laid off in the units of 2%, . Figures 1-3 demonstrate the
gpectra in 5i ((110) plane at & = 10 GeV; %, = 1 corres-
ponds to &I = 110 MeV for the intervals of the incident angles
(0-20) u rad (Fig. 1), (D--ED}#raﬂ (Pig. 2) and of (40-60)u« red
(Fig. 3); the Lindhard angle is %c_ = 71 mrad. Pigure 4 illu-
strates the spectra in diamond ((110) plane), £ = 4.3 GeV
(2; = 1 corresponds to W = 50 MeV, 3:.: = 113 mrad, = 0.9)
for the (-90 + 90), (0 + 180) and (90-270)m rad 1n'terva.ls of
angles. In Pigure 1, for the curve (a) the dIhg!A{UhﬂE been
calculated by means of the dipole formulae (see Refg. /9/), and
the olT.c_ ]o{m has been calculated according to formula (2.7)3
(with the term < A,omitted), Curve (b) is & result of calcu=
lations by means of the exact formule (2.4). It is seen That
taking into account only one harmonic of motion (et a given £,)
is a good approximation. In addition, the discrepancy between
curves (a) and (b) is more noticeable on their right slope.
For comparison, we also present the radiaiion gpectrum for
positrons (curve (c)) obtained under the same conditions in
Ref. /5/. Just as in the dipole case, the spectral curve for
electrons is wider and has a less height in its maximum (cf.
Refs. /1,9,10/) when comparing with that for positrons, al-
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though the difference in height in the nondipole region becc-
mes not so significant. Curve (a) {(Pig. 2) shows that the
broadening of the incident beam {compare with Pig. 1(a))results
lowering the height of the maximum, because the amount of par-
ticles in the channel decreases, and this is the particles
which contribute to the spectrum in the region of maximum. In
addition, the fraction of the above-~barrier partiecles whose
gpectrum is represented by curve (a') is zlso increased. This
circumstance is one of the reasons for which the maximum of

the summery curve (a), calculated by means of eq. (2.7), shifts
to the right. Figure 2 slsc shows the results of the calculati-
on, made by means of eg. (2.4), (curve b) and the radiation
gpectrum for positrons from Ref. /5/ (curve ¢). It is ameen from
Pig. 3 thal the rotation of the narrow beam by the angle nrﬁti
lecads to sweeping changes in the spectrum. The channeled (a'')
and above-barrier (a') particles contribute on different fre-
guencies and their contributions are approximately equal'in
magnitude; as a consequence, the summary spectrum (a) has a
wide plateau. The corresponding spectrum for positrons /5/ is
shown by curve (c¢). Figure 4 demonstrates that when rotating a
wide beam by an angle of about ~ 4. a maximum (keeping its po-
sition) from the channeled particles is still clearly seen in
the radiation apectrum.

Reference /5/ has indicated the simple rules te find the
characterigtic points (maxima and minima) on the spectral cur-
ve for positrons, which are based on an analysis of the Z =
-dependence of the intensity and of the argument of -func-
tiong in (2.4). Por electrons these structures are washed out
on account of a large width of the spectral curves which is
due to & substantial aspread of the motion pericds. The estima~
tes become less definite as a resull. The apectral curve has,
as a rule, one maximum which is due to the first harmonic
(term with n = 1 in (2.4)) of radiation from the channeled
particles (in Figs. 1,2,4 this maximum is at Z_~{). It follows
from (2.4) that at n = 1 the rediation frequencies lie within
the interval (0<Z, < Z‘tji Sﬁ: « The qu&ntitys@-l-&’ z) grows
monotonously with increasing ®{( 3{{), end ¥, shifts to the
left with incressing F . For estimation, it is convenient to

introduce a 'weighted inteasity': F(#)=1(3) %g— 1t

e 1{J' F—

wax F= F(2), then as Z increases from 0 to Z, the boundery
frequency shifts to the left and the peak becomes higher

{e= F(2) ). At larger Z both functions F(F) end %, fall
off. As a result, the maximum of the resultant distribution
4T (&mheq to the 1left from the P“iﬂtzh@i\] -1}5@?{"1@ ++§@4 2\1
If the function F'(E) has a . sharp peak at Z, , then the maxi-
mum alI,-(dQJw:Lll lie near EWCE « If at >4 , mmx?@ F(%
then, similaerly, the maximum nf “‘«‘is to the left from E CE’E\&"
-1;3@_-?'}(%&3% . For 111ustrat1nn, We- congider the case when
a narrow beam is incident at %Q near au,: (Fig. 3). Here the
function F(Z) has a clear maximum both in the channel

( Z, =2 0.7) and above the h&rriar ( Zg ~2 1.4); the correspon-
ding frequencies are: ‘E' ~ 0,94 and :.*-:m ~ 2.4, In Pig. 3} the
maxime of the speciral curves correspond fo E:M.._U 8 and
Er:' ~22,1. We would like also to discuss an important case
when a{‘“e{z mg@) Ag shown in Ref. /11/, such a distributior
is egtablished in thick crystals in the channel and above the
barrier at not too 1arga E Ej_!ru“- This case is reelized in
thin crystels if o<W, & L (gee eq. (3.1)); wherees if

o< %}5 ~ 21:: , then the distribution is not strongly different,
in configuration, from QCE‘) o« The function F’(?) ]:(_E)-g@ has
a meximum at 'E*._.O.ESS, and Em(a]._m. Por the (110)
plane, at &£ = 10 GeV ?E, ~94 in Si, énd at £ = 4.3 GeV
ES 21,1 in diamond (cf. Figs. 1,2,4; curve (a)).

4. Radiation in thick crystals

For a thick nrygtial, the thickness is Lx = fd s where EJ
is the dechammeling length, introduced in /1/:

(4.1)
ga[ G L"ao.ol
Here L) naa 18 the radiation lengih in an apprcpriate amorpho-
ug medium. If & =< 10'7 ev, then multiple scattering will do~
minate in evolution of the distribution function (DF) over &€,
{gee Ref. /11/)+ We shall take this evolution account just as
in Ref. /12/, essuming that the incident beam is & Gaussian
one with respect to the incident angles (its width is Aade
Yamely we write down the initial distribution in which the
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subgtitution .ﬁ.z—r&%-b%:(g”i is made ( %}E(gu is the avera-
ge squared angle of multiple scattering in an appropriate amor-
phous ::u.=ui'd.1.1.1:u"l at a depth E )e If the channeling radiation 1is
not collimated, then one can obtain the distribution over ¥ ,
averaged over the crystal thickness, from formula (4) in Ref.
/12/ where it is necessary to make am elementary integration

over U : L : =z
TR Y YR ~ox
7 "?fﬂaz M:;L?A i @™

o

where é"*’* -
L nR o~ i e Jgt
- Ay = —— B e
R gk R0 T ag g y Jol)= 200

q& = \J -2\ gﬁr@—zﬁcﬂm +%‘@'-1]'&e\u'§ (4.3)

From (4.2), there is mo difficulty in deriving an asymptotic
distribution at Lis> e&. In this 1imit, &3 QO and X\ = 00,
and we find, within an accuracy up to the terms, co {/\]I

Fal s o i
(WY = | e

so that for Z<L<{ )\ we have <%§'> Wg(?‘) . An analysis of
the solution of the kinetic equation, which was mede in Ref.
/11/, has shown in & general form that at very large depths
this distribution corresponds to an uniform one in transverse
phase space. Thus, at s> Q the expression (4.2) is exact
(for the Gaussian beam) and has a correct asymptoticae at L-'-m.
This permits one to hope for a satisfactory description of the

Iunctiun(dﬂ”‘g} at any E. v

> In an adiabatic approxi!.matiun. the energy losses may be 'I:a;-
ken into account in %'SE(E] (Ref. /13/).-

— 42 —

In the foregoing, we have estimated the position of the
meximum of the spectral curve at [, >> E,_{ . Let us now show
that these curves prove to be similar at different (large)
thicknesses. Indeed, the resultant spectrum is-given by an

s d
§<%> gi“lz (4.5)

Consider now the case of ‘arge L when it is possible to use
eqe (4.4). We gplit the integration region into two paris:

0 =— &, and B, ~+-oc; with A << Z <L N+ After that, in the
first part one can substitute exp(-Z/2x)—>4 end we, obtain &
contribution, including L, only as the factor Ly er =0 0 48
the region ( E ~ 1) that contributes to the maximum of the
spectrum ( £,~1). In the second part (Z => 1) the particles
are in the high-lying above-barrier states and the dipole for-
mulae may be used. Making use of formula (7) in Ref. /9/, we
have roughly, at Z>>1: dT ’dmm ‘E—é’{photans with a frequency
up to E,~9[Z are emitted). Although the contribution of the-
se particles breaks the gimilarity, it is strongly suppressed
atm'i:_.ﬂ A; 1. The region up to Z~ X\ contributes to the integral

dZ , so thet the frequency boundary of the spectrum cor-
resf'pond 1 ngf. So, at F,~1 the shape of the aspecti-
rum proves to be universal, and the difference in height is
determined by the scale factor e [_:”E. The accuracy of this
expression is not worse than 3 12 (the order of the terms
omitted in going from (4.2) to (4.4).

integral

Ag an illustration, we shall analyse the radiation from
electrons upon channeling in the plane (110) of a diamond mo-
nocrystal with the thickness Lu = 0.1 mm (Fig. 5), L\E!? 1 mm
(Fig. 6) and qu, = 1.7 mm (Pig. 7) at €& = 4.5 GeV; then
::J'cf:,ﬂo Mred, ©,%0.95 and at ) = 54 MeV ZE_= 1; this
corresponds to the experimental conditions /14/. The authors

Upon collimation of the photon beam to an angle = %E
the factor <o —L—&x?—-— ariges. Recall that all the formulae
incorporate the intensity recalculat 1 per unit length.
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of the cited publication estimate the angular width of the in-
cident beam as ﬂ_ﬂxéﬂ rad. Theoretical curves (1) in Figs.
5-7 are the sum of the contributions from the radiation in a
continuous poitential of the planes; ({d&”d?} is taken in the
form (4.2)) and the hremsstrahlung* (the latter contribution
is depicted as the dotted line; aaﬁreﬂet%ri’ckit iusgﬁ}egligi’oly
small). The crystals LE and L‘ﬁvfbr them (gee’eq. (4.2)) A
ig: heg = TeT, }\.3 = 13, The expected accuracy of the similari-
ty of the spectral curves will be about ~ X\ 2(30-40‘}5] and
asymptotic scale factor is (.Li_g/fi;,a)- ;E:‘I.B. For gﬂs 2 neglec-—
ting bremsstrahlung the calculated curves in Pigs. 6,7 are
similar within an accuracy better then 5% and the scale factor
18 1.2; Its difference from (Lgl.f.-"_;.a”}'”z means that the asym-
ntotic regime does not yet occur. Nevertheless, the accuracy
of similarity, at 5. < 2, has proved to be much better than
the estimate with respect to _}:”9, Curves (2) in Figs. 5-7
are the contribution given by the above-barrier particles. As
the thiclmesses grow, the mexima on them shift to the right,
while the meximum in the contribution of the channeled partic-
les ( %,70.8) remains unchanged. The meximum in the resul-
tant spectrum remains practically at the seme place (curves I).

Figures 5-7 also present the experimental data (Ref. /14/).

Por a sample with Ln* = 0.1 mm, the theory and experiment ag-
ree quite well at ¥_ < 2. However, for the thicker samples
the maximum of the experimental spectrum shifts to the right.
The suthors /14/ account for this by multiple scattering and
by the peculiarities of the gpectrometer detecting two or more
gimul teneougly emitted photons as c-_ﬁe photon with the summed
energy. Since we have made allowance for multiple scattering,
the reason for the difference witha the theory may be in fact
asgsociated with the specific features of the detector in Ref.
/14/. The probability of emission of a photon with frequency

£, <2 can be evaluated using the spectral curves in Figs.
5-7; for the samples with -l-u, ng and L:a we have, cnrres'pcrn-
dingly; W 2 (0.08; 0.46 and 0.65) so that the probability ol
simultaneous emission of two photens is not small for ngami

L

We describe bremsstrahlung using the standard formulae.

14

The accuracy of the dipole approximation ig possible to
estimate by calculation in this approximation and by means of
exact formulse. Consider the radiation in the (100) plane in -
Siat £ = 1.2 GeV ( W= 150 Mrad, Po 20.13; Zo = 1 cor-
responds to G = 4.8 MeV); at [, = 0,24 mm, .&ﬁ'_“mq,urad
that is in accord with the experimental conditions /15/. The
calculation with the use of formula (4.2) are given in Fig. 8
where (1) is the contribution from the chamneled particles,
(2) is the contribution given by the above-barrier particles,
the dotted line is for the contribution of the bremgstrahlung,
and curve (3) shows the sum of all these contributions. In the
dipole approximation, the radiation has been calculated using
the formulae from Ref. /12/. Since in Ref. /15/ the photons
heve not been collimated, but the expressions in Ref. /12/ in-
corporate the collimation, the spectrum has been calculated
for a set of increasing collimation angles Aol 3 starting
with A ,p~ ~ the shape of the spectrum practically stops chan-
ging (cf. the discussion in /11/) because nearly all the par-
ticles rediate to the collimator in this case. Comparison with
curves (1) and (2) in Fig. 8 has shown that the dipole curves
l1ie 5-10% higher (~ Qo ). We would like to atiract ‘the reader's
attention to the fact that the éhape of the spectrum in ?ig. 8
ig mainly determined, in the region of maximum, by the contri-
bution of the particles in the channel. The above-barrier par-
ticles give a dominant contribution only on the right slope
(at Ey,>2). This is inconsistent with the assertion in 715/
that taking into account the contribution of the above-barrier
particles only is a good approximation. Noie a good agreement
of the theory, free from fitted parématars, with the experi-
ment /15/ (unlike the theoretical arguments'in /15/).

In Ref. /16/, the radiation from the electrons with ener-
gy £ = 4.3 GeV has been measured in a diamond with the
thickness Lu[ = 0,1 mm ({(@ 11) plane) and LLE = 0.47 mm (index
'a' denotes the (011) plane and 'b' stands for the (001) pla-
ne) for which % g(p) = 113(79) mred and Byq(H 0.91(0.44); at

3o= 1) Walb)= 50(49) MeV. The divergence of the incident beam
was Qqamnfnrad (Ref. /16/) and the beam of radiated photons

e * e

i



was collimated to a solid angle of 10_7 ster’. The
measured dépandence /16/ of the spectrum on the incident
angle is qualitatively similar to that in Fig. 4 where the
collimation end dechanneling were not taken into account. In
Ref. /12/ the radistions has been studied for the case of the
photon-beam collimation. For the nondipole region, the calcula-
tions can be made in the same manner, but become much more ti-
meconsuming. We use here a simpler approach with regard for
the concrete experimental conditions of Ref. f16/. Sinee
-%Eﬂ Z %::ﬂg , the radiation from the channeled particles will
not arrive at the collimator if the transverse velocity compo-
nent turns out to be too large: Afy ::?]'mg. Within the frame of
the accepted multiple-scattering model it is easy 1o find a
fraction of particles with 1_{:,—:: &ME: k}‘ ~ 0.88 and kSEG.TE-
1f %c, £, ?d'mg , then the collimetor will cause the deformation
of the radiation spectrum only in the region of low frequencies.
S0, we multiply the spectral radiation-intensity distribution
JIG | deo by the coefficients L(q Ocs} (curves (1)) in
Pigs. r‘,%--‘I:‘J]r and add to them c’IW; ,’tﬂm calculated using the
dipole formulae ( ©o<4A ) Ref., /12/ (curve (2) in Pigs. 9-11);
curve (3) gives th?a total contribution (without the allowance
for the bremsstrahlung constituting a few percent). Curve (4)
in Pig. 11 presents the spectrum calculated according to Ref.
/12/. Prom the sbove analysis the sccuracy of the dipole appro-
simation is roughly 20~30% under these conditions ( £5 2 0.44).
Comparison of the curves (3) and (4) in Pig. 11 shm;'s that the
used procedure somewhat changes the shape of the spectrum on
the left slope. The difference constitutes 20% in the peak re-
gion and on the right slope. For a disoriented crystal, the in-
fluence of the collimator can be taken into account in a simi-
lar way; then Ko (K¢ ) & 0.71 (046), and at @ <<E the
spectrum is dIhF/dm s q—r—uk:r@gﬂ. The results in Ref.
o Dbhaad b : ’
/16/ are represented in terms of d(Ic_TIM\JAI . We give then in
an sbsolute normalizetion using the indicarted value of él_‘";" in
Figs 9-11. da

* W thank A.0.Aganiants for discussion of the conditious of
the experiment.
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in Refs. /17/ and /18/ the authors have analysed the ra-
dietion at channeling electrons in the (110) plane of a silicon
erystal at the energy £ = 10 GeV and & =7 GeV, regpecti-
vely. The crystal thickness was L\q = 0.13% mm (Ref. /17/ and
[iy = 0.1 mm (Ref. /18/); Y= 71 (95) mrad, 958 x1.9(1.33);
Zo“ 1 corresponds to 00*(2}= 110{65) MeV. In Ref, /17/, the
events with %‘Q - ED‘Mraﬁ have been detected and the accuracy of
measuring the angles is also estimated in 50 mrad. Therefore,
we put A = 100/4::*3.&, bearing in mind the notes of Ref., /18/
about the experimental set up in Ref. /17/, the quantity A4,
in Ref. /18/ was A, 2™ 60 rad. Figures 12 and 13 give the
ealculationsl results and experimentel data for £ = 10 GeV
(Ref. /17/) end & =7 GeV (Ref. /18/) which we have represeuted
in abgolute units.

Thus, we can see that the developed theory of radiation

fvom electrons at planar channeling, not containing the fittig
parsmeters, describes quite well the experiments for various

media, planes and thicknesses in a broad intervel of eneygies.
It follows from this, in pasrticular, that the uged simple deh ‘!:'5

channeling model is gquite adequate.

17
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™he functions involved in the formula (2.4)
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Fig- 2.

Fige 3o

Fig. 4.

Pigs 5.

Fig-l G

Figure cap tions

Spectral intensity of radiation from electrons with
€ = 10 GeV upon their motion along the (110) plane

of the Si crystal when the initial beam is uniformly

distributed over the angle of incidence in the

01-20/.& rad.

curve (a) is for the calculation by means of formula

(2.7) at Afy = 0, curve (b) is calculation using for-

mule (2,4) and curve (c¢) is for the positron spectrum

under the same conditions. The value of % = 1 cor-

responds to the energy @ = 110 MeV.

The same as in PFig. 1 for the D+501tarad anglea of in-
cidence. Curve (a') is the contribution of the above-
-barrier electrons.

The same as in Pigs. 1,2 for the 40460 jirad angles of
incidence. Curve (a'') shows the cnnt:ibu‘biﬂn from
the channeled electrons.

Spectral intensity of rediation from electrons with

£ = 4.3 GeV upon motion along the (110) plane in a
diemond when the initial beam is uniformly distribu-
ted over the angle of incidence in the -9{}+9Dfﬁrad
(curve 1}&4—‘30}4:'&&, (curve 2) and 90+270 xrad {curwve
3) interval. The value of £,= 1 corresponds to the
energy ) =50 MeV.

Spectral intensity of radiation, per unit thickness,
frnﬁ electrons with §£ = 4.5 GeV upon motion along
the (110) plane in a diemond whose thickness is
L.l = 0,1 mm. The value of 3;0 = 1 corresponds to

> = 54 MeV. The dotted line shows the bremsstirah-
lung contribution, curve (2) is the contribution of
the above-barrier electrons and curve (1) is the re-
sultant spectrum; the experimental data are from
Ref. /14/.

The same ag in Pig. 5 for the erystal thickmess
LE = 1 mm.



Figc Ts

Pig. 8.

FPig. S.

Pig.10.

Pig.11.

Fig.12.

Fig.13.

The seme a8 in Fig. 6 for the crystal thickness
L.%: 1.7 mm,

Spectral intensity of radiation, per unit thickness,
from electrons with £ = 1.2 GeV upon motion along
the (100) plane in the Si crystal of [, = 0.24 mm.
The velue of %, = 1 corresponds to <3 =4.8 MeV. The
bremsstrahlung contribution is shown by the dotted
line. Curve (1) is the contribution from the channe-
led electrons, curve (2) is that from the above-barri-
er ones,and curve (3) is the resultant spectrum; the
experimental data are from Ref. /15/.

Spectral intensity of radiation, per unit thickness,
from the electrons with & = 4.3 GeV upon their moti-
on along the {011) plane of a dismond crystal with
L*q = 0.1 mm. The value of £, = 1 corresponds to
W = 50 MeV. Curve (1) is the contribufion of the
channeled electrons, curve (2) is that of the above-
-barrier ones, and curve (3) is the summed contribu-
tion without the bremsstrshlung taken into account;
the experimental data have been taken from Ref. /16/.

The same as in Fig. 9 for the crystal thickness
Lo = 0047 mm,

P

The seme as in Fig. 10 for the (001) plane. The value
of %, = 1 corresponds to the energy <5 = 49 MNeV.
Curve (4) is the result of calculation by means of for-
mulae in Ref. /12/.

Spectral intensity of radiation, per unit thickness,
from the electrons with & = 10 GeV upon motion

along the (110) plane of a Si crystal mf.IJ = 0.135
mm; the experimental data have been taken from Ref.
/17/. The value of 2Z_ = 1 corresponds to () =110 MeV.
The dotted line ghows the bremsstrahlung. The solid
curve is a summed spectrum.

The same ag in Fig. 12 for &€ = 7 GeV and crystal
thickness [. = 0.1 mm. The experimental data have
been taken from Ref. /18/. The value of ﬁ;ﬂ = 1 cor=
regponds to 4 = 65 MNeV.
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Fig.10
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