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ABSTRACT

The correlator of two quark currents with baryon quantum
numbers and of one four-fermion current is analysed in detail
in quantum chromodynamics. The non-zero mean vacuum values of
the field operator products are taking into account. Leading
order in g is considered. The sum rules are obtained which
being saturated by the lower baryon states enable one to find
the matrix elements of Hy, between octet baryons. According
to PCAC, this is equivalent to finding S-wave hyperon nonlep~-
tonic amplitudes in the soft pion approximation. Results con-
firm some model calculations and after taking into account
another contributions allow one to fit to experimental S-waves.
Matrix elements of Hy, obtained give also quite reasonable va-
lues for the P-waves in the ground-state pole approximation.

-

1. Introduction

Nowadeys, the QCD sum rules (SR) method suggested in ref.
(1] is widely used for describing hadron properties. The mas-
ses of mesons [1], of baryons [2,3], formfactors and meson
coupling constants 4 have been calculated with this method.
In ref. [5_] the QCD SR for polarization operator of nucleon
current in external electromagnetic field have been formulated
which enabled one to calculate proton and neutron magnetic mo-
ments. In ref. [E], uging analogous SR in external axial field,
the axial constants of octet baryons were calculated.

In this paper the QCD SR method is used to determine the
matrix elements of weak hamiltonian HW between octet baryons,

<B, |Hy/ |IB;> . Their knowledge is equivalent to know-
ledge of S-waves in the soft pion limit once DICAC is used.

The method is based on consideration of three-point ver-
tex function of two baryon currents EL, 1}2 and one four-
fermion one, ﬂw « The momenta of E ’ 'gz_ lay in the deep
Euclidean region. To write down the double dispersion relation
the light-like momentum 1 # O is introduced into the weak ver-
tex. The calculation of the vertex function in the leading or-
der in &g with the help of operator product expansion (OPE)
can be performed in the usual way (if one restricts himself to

€ £ operators) by computing Feynman graphs with some of
the quark snd gluon fields substituted by soft vacuum ones.
Other fields are hard and can be considered as perturbative
ones due to asymptotic freedom. Infra-red ( I R) stability (at
12 = 0) of corresponding Feynman integrals is ensured by four-
-fermionic character of weak vertex. At = T these inte-
grals are IR divergent. But at = 7,8 they diverge only lo-
garithmically and can be estimated by introducing reasonable
IR cut-off, without detailed knowledge of the long distance
dynemics.

The paper is orgenized as follows. In the next section the
method is described. In sect. 3 currents are specified and
possible values of O -corrections are suggested. In sect. 4
congidered are 1) the choice nfx -matrix structures in corre-
lator at formulating SR and 2) consequence of the latter for



the matrix elements of parity violating part of My . In
sect. 5 the most reliable SR are examined. In sect. 6 viola-
tions of both the SUCI) symmetry and Pati-Woo theorem
are taken into acecount. S-waves in the soft pion limit and
P-waves in the ground-state pole approximation are found. Tn
gect. 7 selfconsistency of the SR is shown. In sect. 8 we
conclude.

2. The method

The correlator of interest has the form

K= [<0IT{ YY) Hy, @) F, )} 0> exp ([~ (1)
--:'f,x) a{‘.z'a/?

where ?f : yz_ are baryon currents. To determine matrix element

<B,/Hyp /B > we must single out physical states in
(1) in two channels. So we need the double dispersion relation

for K. To obtain it one should consider the variasbles ?fz s ?:'

as independent, i.e. put = ?{ —ﬂ #0 +« The value ex-
tracted from SR is then the function of 12, and we are inte-

rested in the case 12 = 0. OPE is effective, generally spea-
king, at S,=-973>0 , §;=-9%-0

At = -l p . However, as was mentioned in the int-
roduction, power corrections due to Q/.Q 8 operators can be
found in the usual way even at 12 = 0.

SR are obtained if the correlator found by insertion of
the physical states 5;,‘ ’ 3@' is equated with that given
by OPE (and represented here in the dispersion form):

2, 54 U o S 1 =
I‘\‘:,‘:.". d —Mz a¢ %"‘Mf 5 (2)
“ g oo oo - Ity
= z 7’:] ..-ﬂ;(s J.EIM
=0 Ea a r's'f +"§‘)(‘S.-l +'sl)
Here ﬁ.;_’ ﬁi-?J are resgidues of 3{,". 3%; inte currents

Yy s v oAXISOF/BO= Gl &d ~ , where baryon
spinor ¢{ is normalized as &&f = 272 :
<_3‘.;,-/ Hud By > = Xy 479, € , £ (5,532) are

some scalar spectral functions, and all the spin structure is
absorbed in matrices T: :

To=9-%, 1=4+%, 75:45([%‘!4 5= )

For simplicity, we have inc‘,il.ud.&d in (2) only one-particle in-
termediate states J PP= and parity conserving part
H'I:', of Hw ( HW is congidered further, see sect. 4).

Apply the double Borel trensformation [4] to the coeffici-
ents of T; in (2). The former is defined for the scalar func-

tion £(S¢,S;) as

Ct+loo s, JS :-Hns‘ ‘élfs S
Sttt g [o2p (%) T 1% () 77 Fso )

where C>0 ., The Borel transformation improve$§convergence
of OPE serieas. It alaso suppreasses the contribution of higher
resonances in (2), therefore at the first step we can confine
ourself to the lower states in (2):

o~ 2 2 e
B el G- B[ g mpm
+5 my+my* Ty ] =;§.,1}-["t§f'.[ #ﬂfsflsz)(?}

o o

eol-§-5)

At the gecond step the higher states are taken into account in
a model way as continuum. To do this we restrict the integra-
tion in (5) to some region 2 in the quadrant 3,2 0@ ,
% =0 - Two variants for are considered:

S;+5; < 250 (triangle) (6a)

and
.S" < Sfﬂ} Sz{su(ﬂm) (6b)
“21 is defined by (5) as a function of tf S t; . Purther,
the thresholds S, or S, Szo are chosen at which the re-
gion of practical constancy of al'” 4 fg, #l ) exists. tf ’ tz
mst be sufficiently large in this region to ensure the small-



ness of power corrections. The difference between the values
of “11 obtained with two choices of.‘z (éa,b) doesn't exceed
10% for each structure TE considered.

3. Currerts

Consider in more detail the currents 'D‘, ?Jz ’ HW ente~
ring (1).

Baryon currents "h ’ 1]1 aré three-quark operators
without derivatives. Proton current is of the form

g, = uichub) rhdie,, ¢ = Ly @

Other currents are obtained from it by SU(3) transform. The

SR for corresponding residues of baryons with the exception of
/L case were obtained earlier [2]. They are given in Appen-
dix A.

The structure of the effective hamiltonian for non-lepto-
nic decays HW ( Qq) is defined by the typical quark momen-
tum Qq . Glg is substituted by I at the Borel transformations,
Here M2 is some gcale of order of t; . t;,-_ « Since

M"" {G'E b Me s the result of ref. [B] is valid (with
notations of ref, [10]}:

Hy (M) = VZGes [Ag(M)I, + ag(M) I ]

I.?. - (dﬂ?;,ut.)f&a’ﬁs{_) -~ (&-a;;ug) (a‘y/{g‘_)

I = @%u ) (TH's,)+(T g u)@1s)
- Az e ¥

%(ﬂ) = (%(”)/Q’S('MWJ) P ,?3—5-:-226

0=Cosh, sS=Sinb,

(8)

Further, make some explanations concerning accounting for
the so-called "penguin" mechanism considered in [9]. Graphs
occuring at calculation of the correlator (1) can be divided
into two types, A and B (see figs. 1a and b, respectively).
Bach cut between HW and ?{, Hz intergsects four fermion lines
in graphs A (in the regime when all the quarks are hard), and

can intersect only two such lines in graphs B. It is easy to
see that graphs B are due to the "penguin". Contribution of
distances X at which Hu goes away is proportional to x~
in case A (each fermion line gives factor of x2); it can be
proportional to x'ﬁ in case B (when the above mentioned cut
doesn't intersect gluon lines at all, as in fig. 1b). Thus,
the case E as compared to A is characterized by enhanced con-
tribution of large distances. Therefore the statement made in
introduction and concerning 1 R stability of OPE coefficients
at d. £ 6 is valid for class A of diagrams.

Posaible is the geparate studying of A and B .S' -wave
pieces, since there exists the weak transition = =+ X~
contributed only by graphs B (see fig. 1b). Graphs of the lea-
ding order in Ofg studied in this paper determine the dominant
contribution into A plece. Graphs B occur in the next order in

®¢ but the corresponding loop smallness can be compensated
by the contribution of large distances I . We use the expe~
rimental fit from =~ =* 3§ X° decay obtained in the way
analogous to that used in ref, EB] in analysis of operators
ﬁ;;(qﬁ originate the graphs like that of fig. 2). The re-
lations between the contributions of graphs of fig. 1b into
different transitions in the baryon octet are the same as the-
ge for the separable contributions of %‘ in SW(3) limit. It
is explained by the similar structure of graphs of fig. 1b and
fig. 2. Nemely, write down for the s-wave piece B:

12

A(ZDg _  A(A2) A(=Z)
Y ey = i = 2

where masses are introduced in order to keep these relations
true for separable contributions (of Cf ) at the low normali-
zation point of Hw. Then write down, following [9], the
SU(3) - expression for A(E"-> X" 1°) :

ACE">277°) = VT [A(ZZ) +AA2)] ~A(z})=
=-058 =VZ[A(ZZ)g+ AlN2)g] —A(Z %),

then
A(E})g =+091, AN )g =140, A(=2)g= #1294,

(10)
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Hereafter A and B pieces will be referred to as Iy and "pen-
guin®™ onea, respectively.

4, -mat gtructures in the
correlator..
4.1, Parity conserving part of the nomlu.tnr

The structure To =@, —®; enters the left-hand side
of the SR (4) with the small coefficient, proportional to
( m,‘*: m,) o3¢ At the same time the contribution from

z - transition to the coefficient nf;é-o is pro-

portional to (My +m3 ) oty , where <'Bf}Hw/_B,> =
= ot‘.._' Uy é“f. Therefore, the SR for Jgaren't suitable
for the calculation of < By [HE /84> . the structures
Te » T2, T3 give three SR which will be designated as I,
II, I1I, respectively. |{ eppears at the bave loop level
(fig. 1a). In addition, vacuum expectation value (VEV) of the
four-quark operator YPY P gives also large contributi-
on (fig. 3a,b). Relative largeness of the latter is commected
with the loss of two small loop factors {161[1}-1. It is essen-
tial that the graphs of figs. 1a and 3 are IR stable at
@% = 0. The situation changes for the SR II and IIT. It is
the contribution of operators WY end ‘I‘?'P?V?
which 1s characterized by loss of loop smallness in this case
(fig. 4). However, the diagram of fig. 4c essentially includes
at Q% = 0 the long-distence dynamics. Besides, the reliability
of factorization hypothesis for the six-quark VEV is not so
well established as for the four-quark one. So SR II and III
seem to be less confident than I. However, they are consistent
with I as we shall show further. Detailed numerical results
are given for the SR I.

4.2. Parity violating part of the correlator.

Independent structureas are Té XS in this ocase, 154 O+3.
Define the matrix element of Hgy, between the virtual baryon
states as the constant (,, of two-particle ]g- -vertex in

Peyrman graphs including baryons (fig. 5). Now it is the
structures 1;‘_’; and Tzfs which are saturated by the tran-
gition . - +. Corresponding SR show that }” is equal
to zero in SU(3) 1limit. At small departures from SU(3) symmet-
ry we get among others the terms proportional to { tf"‘t;) .
Dependence of these terms upon given by hand reletion between
t., and tz prevents from giving an accurate egtimate of _ﬁ_,
in this case. :

5. Sum rules iSR] and fitting procedure

+
First, consider the matrix elements of Ig for E »p
transition. Introduce three invariant runatinnné‘.(qzéi.
" = 1,2,3¢

f OIT{ P2y (D FyCxI}l0>e20( 19 4-/9,2) - (12)

¢
Aody = [ (545 - (5,520 T ~Ae €5, 50T; ]

Then the ,S' -wave contribution of interest is

= oz B Ay (M) mg , My,
AE2) ﬂﬂftf,tz)_mm_agmp(?féz-)

Ty K (1)
= k‘ (Z‘f', tz)
S
(15 +77%)* 4 (2 22) v
nsider the following VEV's:I, (G")’, <YYYY>
<YPYGP>, <¥Y¥>, < Y6 > (we denote

‘f'w'ﬂq!- = ‘l’?’q’f ‘f:’ ?m etc.)s. Two last contribute
into h,_, ‘23(111 sect. T operator '-PGG"'F is also considered).
Third end fourth VEV's are estimated by factorization. Taking
into account the anomalous dimensions is made as in ref. [2];
the anomalous dimension of operator averaged by factorization
is put to be equal to the sum of the anomalous dimensions of

(13)




factors. Calculation of diagrams including emission of soft
gluons is performed in the fixed point geuge [4]. The coordi-
nate origin can be chosen either in HW or, to check the ans-
wer, in W4 or g . The result is

6 £ —"@ t,~1,)t - V3
k{"st:j__f_z é’L({ 2

fé’ 1 tf"'tz tz,
. 3 % [_xt",tt +Gf1__1,+tz) ]*

t%"'-t??-. S t,+t

+ i}a ['L{'l" t2 ('.ttf"l‘tl_] tt, Ay tff:
0 +4 + 101, + (2

- et gf”‘-‘- szca’-J]J

o _ (dts (410 exp(-@%/2:) ,
1@)= I 5 (';4+‘tz+t§)7- . i

R, = g q tita tdy 4 g, ‘Va[i ('t, t,_)}

% t'+t"1
o ts +15
3 - ‘iaft,tz e + dg:0

rere | = mscm/«gm = bn(M/N)/ b (pA),
is the normalization pcint of OFPE, = 0.5 GeV [1_],
A = 0.15 6ev, 4 = = (27) d??’} = 25468 d?-é'V-? 2
@y = -(R7)%<g ?’z@uz”ﬂfé}m> = 4 o g2
= 0.5 gevt, G =% {%)@]-zc’o"’ a’*”)
The value (Q) in Af diverges logarithmically E.‘E
RE->0 . on the other ard, :_t is clear that the (% depen-
dence is stabllized at 2r "'m,;. ~ /551"2 where Mf is
the mags of the lower state in the four-quark chennel. Then

2 Z‘,f-r"z;"-_-__

IT@RT)= b D1 (15)
4”'1‘1 ez

with logarithmic accuracy. In another way of estimatmg we

single nut the pole contribution of the form C(ﬁ 1" ff
in fc@ ) and reatrict ourself by it at f = 0. To ﬁuppress

10

-

the contribution of higher states in J (&%) we apply the
Borel transformation in a . Constant ( is estimated at the
Borel pa.ramntar f_‘—m*, and we get at tf—tg = ¢ 3

@*»0 ff'f't:_
1@ = i, P T, +t,)i' MT"'?’(T@ (16)

}?’ > 7= ;?_'-!'—/ z—t--r"... %=y

In both the methods of estimating we obtain the divergent at
Qz“—ra term being finally reduced to the contribution (of
large distances) of order of 10% to the full correction due to

YPYGY>

As a result, we come to the Iollow:‘mg sk tor A(Z +}
at t‘ tz—Zt -ZM"and fnrﬁ

ACED) = A ) = ey 3G e (5,

'm—z—?——z 77 27 ,.‘, 7% = {(mz ,t-m’-)_,
29 /43 / £ /15 (17)
k= 2L/p3 1520y 2—)]
/77 _{ 3 2
fw/?/ £/ "f-ﬂﬁ"%{?"/zv
<g(¥ izt "@L, VIV >= mE<Fw>?

where renormelization group factors are omitted for brevity.
Pay attention to the fact that the ratios of the power correc-
tions to the asymptotic term are almost the same for k,a:nd

for ﬁ z. Therefore, the dependence of the resulting A( p-3 )on
the VEV's is comparatively week.

Accounting for the continuum contribution in the triangu-
lar version (6a) leads to the following substitution in :

12k,) O
fﬂff#fnff ”*(/z-‘ﬂv :”ﬁﬁ%wg)ha}

1



Formally the same substitution must be done in f < where now
Se is the one-dimensional continuum threshold.

We take three values for m:_= O , 0.6 and 1 GevZ, In
table 1 the residues a'l of baryons are presented, These are
calculated utilizing the experimental masses of baryons in the
SR presented in Appendix A. We put m, = 150 MeV, § = -0,2.

Consider the case H‘I" = 1 GeV° which is the worst among
studied ones in the sanse of the value of power correction.
The dependence A(i.) A (f) is depicted graphically in
fig. 7 at three values of threshold Sp (in the triangular
version of continuum). At .S', = 2.1 GeVZ we obgerve the good
1% Aff) %> const. Estimates show that asymptotic term
is almost completely (295%) compensated by continuum at this
S, 2iving finally 10¢20% of the whole answer. As a result,
the term due to < ‘f’¢"|" Y>> dominates the answer. It grows
with t as 2. In the SR II oF III the term due to <YY>
is main growing with T as t or t‘l » respectively, and
therefore being more strongly suppressed by continuum. As a
result, the answer is less gsengitive to the value of the fol=-
lowing corrections in the SRI, in that we see once more advan-
tage of this SR. The ratio of the correction due to {‘i‘?

WG V> to the main term isn't larger than 25% at
t > 1 Gev?, which setisfies the condition of applicability of
OFPE in this region f 1]. The final answer is

+) =
A(s}) = 160 (19)
The square version for continuum (6b) at S,, = 5,5 leads
practically to the same answer

A(xty =458 (20)

Fhally, ohe cain wiuly A6 dipentases: CE5) SAGE)
on two variables f‘, ’ fé « Level lines of this function are
depicted in figs. 8a,b for two choices of the continuum
thresholds ( Syp , Sz ) in square version of continuum. In
fig. 8b we have the square of the flat region enhancing as
compared to fig. 8a. The result reads

ACEY) = 1499 | (21)

This method is in &nma' sense less reliable than the linear one:

12

platou existg at f* Hﬂt‘?' A ] GevE, not at z‘ 2{

= 3,(;“*??3"”—*1 GE‘IE and the power corrections are more es-

gsential here.

Thus, the regic.. of fitting the SR exists and the results
obtained by different procedures of fitting differ from each
other by no more than 10%

6. Corrections to SU gymme t
and to the valence guark model

6.1. Corrections to SU(3) symmetry

In SU(3) limit ,S' -waves are given by the expressions
analogous to (13) and (14) up to the Klebsh-Gordan coefficients
80 that

- AED yezt)=-1EAOD) = BACZ) (o
Consider operators ”g— ’ @W?_MSW&’V ; /?25 V?f’?"'

end also take into sccount the terms proportional to F=

=l CSS—RUIDS/CCEUD> 32 LS GS—BGUI> /CEGu>
In doing so for I3 piece of ,S" -waves We get — A(E=)/VZ =

= A(E:} a3 before, but expreaaiana for aé (2:5, z.f, be~
come different for = , 2 and A decays. As a result, three
different sets of functions ,é t'é;,g and lﬁ*: E.I‘ILEIE'

ks, Ms/fﬂ‘f@/*f Fats 2257 %2

é?;: ,é _M:,:?,g.z?,, 2+ 22Y dj*f/ffﬂzf-*g_%/
b=l = (72t 54 LEEEERG2) 4 £7al?
for—torz =t (76al - 52 4;, o ff Fat- EELEN G 2)

fopHoos =M (- fz%f/ “far-£a,)
by~ Koys =M (29D (- S 2ty i

y = "'yéf’g =/l {5 Sat'r f%j-r‘f,@ 2%~ ﬁ'f-é-f iﬁ;&g}
bz =22 £ 2t St Zz,)

13



Kye —hys =ms (1203~ 82%) 7 £ C1ar7)

Here fff-'-fz -‘-;ZZ“ and for 7 gee (16). SR 1II and III are
congidered in the next section. Results of fitting the SR I
with the triangular version of continuum are presented in
table II for :f— ~0.2, ms= 150 MeV and three values of mi
0,0.6 and 1 Ge‘i’ e Given are also the results of calculations
in the MIT bag model [14, 153 ami in the harmonic oscillator
model [16] 0f the values of m used the value 0.6 GeV? ig in
the best agreement wu.th the nuclean SR [2]. We gee that our
results for this fﬂo are in the best sgreement with the latest
calculations [16_].

As for the full ,§ -waves in the soft pion limit the
"penguin" must also be accounted for. We use the experimental
fit (11) for that. 13511‘1 "penguin" S-w&ve pieces are presen-
ted in table 3. Adding them leads to the large as compared to
experiment amplitudes A. However, the correction due to the
non-zero pion momentum can be essential. Namely, the important
role of the pole contribution from the SU(6) multiplet (EQJ ‘fj)
was revealed in ref. [1'?]. Since the esgtimate of ref. [‘IT] is
valid within factor of 2, accounting for it has an illust-
rative character. We give in table 3 the values differing by
20% from those used in [1?] to show the principial possgibility
to fit to the experimental 5' ~WEVES.

In table 4 presented are P -waves in the ground-state
pole approximation. The formulas for this spproximation are
given in Appendix B. 13 and "penguin" pieces of commutator term
in ,S, -waves are those used in table 3 and are considered se-
parately . Por axialvector coupling we use the measured [19]
parameters = 0.823, F = 0.428. Table 4 is in accordance
with the MIT bag estimates [21 ] giving essentlal values for, the
contribution of the next resonances into B(ZJ )and B(Z.)
(in case Z+ it reaches 40% of the whole amplitude B).

)

Stress the following. If the "penguin" piece of S-Wd-v’é
is interpreted as separable contribution
of ";'-?5_,5 with 4‘5’;..;-.- normalized in low-energy point then the cor=-
responding pole contribution into P-waves turns out_to be just
the analogous separable contribution of %G into 2 -waves.

14
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6.2. Matrix elements of IG'

According to the Pati-Woo theorem f11] matrix elements of
Iz between the one-baryon states vanish due to antisymmetry of
the baryon wave function in colour indices in the valence
quark model. However, the process of contraction of colour in-
dices is changed in the diagrams like those of fig. 6 with the
goft gluon emission, so 16 begins to contribute. General dia-
gremmatic analysis leads to the following parameterization of
1¢ piece in S -waves:

A(z*).:ﬁBA(I_) =d8Acst) = -——-sm )=
, A=) = JA(._.,J 2- a3

?.PI
== & SAMNS) =~

This result is valid for the specific choice of baryon currents
(gsect. 3). This analysis shows also that & emerges only if
condensates of one (and only one) of the quark fields %, %
(see fig. 1a) and of one of & , % are teken into account
4#’#?&'?’) is the lower dimensional (df- 8)
VEV contributing to & . Next VEV's cennot be utilized for cal-
culation of & since their OPE coefficients are IR divergent
in the power manner. The result of calculation of & due to

wﬁw&¢> read; w3

s=-=% ,;r,”%f ﬁ;ﬁ az;m)ﬂ-’;'ﬂ/-—-)ﬁ‘é
!é' = __._-JL.-{ﬁ&g-. B 37,/J

To estimate E introduce the continuum threshold Sp o« At
‘ >> S- :

e "‘”"' ”"n?‘ﬂ'ﬁ?-
=t £, (5. /) exol/mE t)

Choose the aqtmlit:ln (’f) = 0, f?l‘) = 0 as the conditi-
ons of maximal constancy of ff7). We get [ = 0O So= 2/t ,

(25)

Qe ZLIUS, (L) (26)

15



Note that S, ~ 2 Gev? obtained is quite reasonable, and at
t = 9© the hiFhe:r power mrrectinns wnish. Finall

FL)=2m% |, texing M2 —/ﬂ” , B =& .Fk
we arrive at
S = —p2mi/1Ger? (21)

The calculated correction due to I, develops itself at experi-
ment es the A7 =3/ pole P -wave amplitudes. The latter
are given in table 5. The contribution of separable diagrams
into AT = 3/2 P -wave amplitudes [9] is also given in
table 5. It is seen that taking into account the pole contri-
bution in addition to the separable one improves the agreement
with experiment.

7. Consistency of the sum ruleu-iﬁﬁi

As we have geen, there are another contributions into
,S' ~waves begides that calculated in this paper. So, the
question of reliability of calculations is rather imporiant.

Here we congider SR II and III corresponding to the chi-
ral-noninvariant structures T-z.' Ti in the correlator. Con-
gistency of these with SR I is shown. In particular, the dua-
lity estimate is obtained from SRI and II. It has the univer-
sal form and is compatible with the calculations made. The
results of fitting these SR turn out to be also consiatent.
Finally, correction due to the VEV & q’GG?) is calculated
in two variants of estimating this VEV: 1) in the instenton

approximation and 2) by factorization., It's taking into account

turns out to change the answer slightly.

Ts1. Duality estimate

Consider the 1imit t1,f2 “»©© in the three-point SR
and  t-»6o in #20t) . In this limit the (nonnegative)
power of H transmites to the same power of the continuum
threshold S, . Bonfine ourself to the main term in both the
SR. To cancel the dependence upon Sg in the final answer the
powers of MZ must be the same in both the SR. There are two
possibilities satiafying this condition: the SR I or II can be

16

taking in the numerator of expression for G -wave, then the

SR for contributed by the VEV <yP> or I, respectively,
must be taking in the denominator. It is important, that the
power of MZin the mein term in the SR I is equal to 2 (see
sect. 5). Thus, we hﬂ.‘ﬁre in SU(3)-limit:

+ ty+1;
ACEh )«-15.’.,#,“,z i ie 3(H)8950(m’- { ?—)
{
mg? %k

R AT
where }/ zf .
g-ffzk,,:-—-n L 'g[;ffd +2( 4 ‘)]
e.ga(-ﬂf/?) at? (29)

t2z
sk #%Z -t
fe.gaﬁ/ﬂ/f}- 2L

Introduce the duality interval .S'o in each of the baryon chan-
nels. Then, tending Z:,, Z;, >0 in (28), (29) we find

#F

-f' I (30)
the result, identical for I and II SR. Here we have uged the
result of pcAC <PYD> =— i m5 5':1"-; (my+ MJ) (7],

M is the normalization poin‘b of OPE. Note that

{m“-\' m&)ka,a(fl) is renorminvariant. Estimate is given
for €S = 0.215, £y = 133 MeV, ( My + MY),, sGev -
= 11 MeV, A = 0.15 GeV, a3(50 GeV) = 1.

Notice that universality of the estimate (30) for the
SR I and II is the consequence of the factorization of four-
-quark VEV <'f’¢4’¥’} entering é.i .
T7.2. Fitting procedure

As was mentioned in sect. 4, the contribution of six=-quark
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VEV (fig. 4b,c) conteins no small loop factors, at the same

time it's OPE coefficients are strongly IR unstable. True,

the graph of fig. 4b can be estimated perturbatively, giving
far the sum of it with the main term due to

Ry = ga’c(ﬁga"t G, e

in the framework of the factorization of six-quark VEV. The
correction obtained to the main term is of order of 10+20%
and one can expect that the full correction due to < ‘I‘?‘P"IT"PW.)
is of the same order of magnitude. The accuracy of consisten-
¢y with the SR I must be the same.

ag Ve take kzzfrﬂm (14), (23) and write out also the SR for

.F!-’ _?H [2] a (w
Az}) =503 M#E?:?;e.ga/r ) 1%

ky=Zatf1+5f+ 7 ZEt +a9m‘q + 54

2
My Er ea;a(-m}/t) =al
mys B2 exo -5 A) = ‘f"z/f""” *3 1")

(32)

We put d, /Q =1 GeV°, To eliminate the dependence of fi-
nal anmr upon the scale of YYD and of other chiral-
noninvariant VEV's we have expressed both ka and ﬁ' in (32)
through these VEV's. The fact is that the structures of diffe-
rent chirality in two-point correlator give rise to somewhat
different ﬁ" . Nemely, we have = 0.97 from(32)
which is 25% smaller than the value 1.26 given by the SR with
asymptotic loop (table 1). If this difference is due %o the
inaccuracy in the determination of the scale of VEV's, it
turns out to be unessential in our approach. Note also some
stability of the result with respect to the choice of SU(3) -
= violation paramataraf . m_r.' , which is seen from the follo=-
wing formal anzats:

Ving ity exp - st) By =2t (1 £5 +

f M.rzt +f—-"’%‘f)

& 13

(33)

which should be compered with K,  from (32). For f= -0.2.
ms = 150 NeV, we find:

A(st) =148 (34)

This velue should be compered with 4(3L)= .44 +1.727 zrom
teble 2 at /ME = 120.6 GeV°,

The SR III are the least reliable ones due to the high
power of t being equal . to lf in the main term in these
SR. As a result, the main term is sitrongly compensated by con-
tinuum and the answer is sensitive to the wvalues of subsequent
corrections, of which the nearest one due to < WPYGY) venishes.
Therefore, for example, accounting for the ,S‘Uf?} ~yiolating
VEV's changes the answer for 4 {Z':} from 0.4 to 1.1, i.e. more
then 2.5 times. Here we can state only an order-of-megnitude
congistency of the BSR.

7.3 Correction due to CYGEY>

There are geveral VEV's os zero colour and Lorentz spin
ulffering by the method of coniraction of indices in (‘P“G-
G” ?—f& e 2 To calculate their contribution into ccwralator
Ln the instanton approximation we expand the correlator in
the instanton field up to the power term determined by the
VEV's <Mq¥¥ y¥> < ?H‘PW‘P‘-P,) and <WGGY>
Then we find an_g.l Suitract from this tem_its part caused by

Mo WYY YW and < Vu¥Y¥YY P>

At the first step we use expansion in the quark mass
of the quark propagator in the instanton field [12] . Ve get
the diagrams like those of fig. 9, where Pﬁ iz the zero
fermionic mode [12] « Caleulations give

Flezpl ) =(ox)*m* [dnce) B 1 (557
f('.?:’)-—[f’-p‘- 0202 ~ -f:.r_/-f;.r"-
= 7+ 02202027
&= ﬁm:r)’ﬁf’ _fc/ﬂ(pJ-- I(; 77) )
25 or'2e3 4 2%
Jee) = [1# F 27— 28 ’ﬂ'/“?”

s "=
xft O ARER2E # B7E 2

For ; see (16)., Here the terms in square brackets in

(35)
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I o , correspond to the disgrams with one F» (fig. 9a,b)
whila the last terms sre due to those with two R;- plus quark
mess insertion (fig. 9c¢,d). These last terms correspond exsct-
ly to {'mq‘P?'«P¢} piece and must be subtracted at the se-
cond stage,.

As for the {‘?F'-P‘P‘P‘P}. piece, these VEV's are redu-
ced by equations of motion to <'mq "‘P"P "'l’w} and some mi=-
nimal set cf VEV's including derivatives, The latter are cho-
sen as (¥ vFQwJ(TrBw)> end (V70 )W rgt"v))
where rA I-B are bispinor }?ELerz. matrices, A,B = 116,
,‘Z‘tn ar 'bhq“{.}ell-ﬂann ma.tricas in colour space, P;.., =
= ? V Vn = f’nﬁ; ﬂfﬂ and indices A;Eﬂi-t

are contracted in all poasibla ways to give zerc Lorentz spin.

Saturating thasa YVEV's by instanton one ea at
<(V.u)Rit a‘d’) o -e:mm'u;(a‘
& ~(36)
 (5=4p°%, 5 byt 1 re G J;m G
= Lo Yasom "i’f Tusik Spsem ), o = %5, Tppes =
= Fpu s =
which &llaws one to find the {?a‘f"?" ?‘"?} piece in I:,Ja'
& ._L ¢
Leppts =726 F i
-
Jer@ts =—3 "Es?'i z¥

Subgtracting (37) from the bracketed termc in I,J (35),
we get the correction due to < W&EFGEY¥ > in the single in-
stanion epproximation:

Fial = 4+0 22— 045"
ko ~d = {+ 0425222040 2¢

Typical N iz (600 Me‘?’)-1 [1 ] The corrections obtained
wrs Taaitear 1% saa S N b s Festur <5 15, 40
A(E'*) yemains unchanged within 5%: Note that the corres-

pondence between the corrections in ﬂ and -é-a keeps at

each step of our calculation.

Estimste of the < ¥WG& F}' correction within factoriza-
tion hypothesis is achieved by treatment of the graphs of fig.
1098,b. The two=-point correlator wes considered in [2:’ « The
result has the form

(38)
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I=1+0- L~y la
o ""*}(aﬁz */{*??‘) (39)

Again, accounting for this correction leaves the answer practi-
cally unchanged.

8. Conclusion

We have considered quite definite pilehce n:r_,S' ~WEeve amp=-
1itudes in the framework of QCD SR, With the wvalues obtained,
we have also calculated the pole contribution into A4AT= Z and

AT = 3/2 P -wave amplitudes, It turns out that some
phenomenclogical or model-inspired accounting for other pleces
of amplitudes considered can, in principle, give reasonable
agreement with experiment. In calculations performed, the comp-
lex VEV's <YPYWYY> ang <YYYGY> play definite
role. These VEV's are estimated using the factorization hypo-
thesis. ;

We have shown that the results for the ,§ -wave amplitu~-
des given by QCD SR are quite unambiguous (within 10-15%), In
particuler, we have checked consigtency of the SR and stabili-
ty of the results with reapect to the choice of fitting proce-
dure.

WB have studied in detail power corrections in the region

R/ " where - OPE 1s applicable. We have shown that
con.aidared VEV's change the numerator (three~point SR) and the
denominator (two-point SR) in analogous way, so that the answer
weakly depends upon these VEV's, at least, in qualifative as-
pect. Cne can say in this sense that S -wave piece calcula-
ted is low sensitive to the properties of QCD wvacuum. Using
QCD SR for analysis of the "penguin" mechanism where the long-
distance physics is essential can be the next step.

In conclusion, the author is indebted to V.L. Chernyak,
I,B, Ehriplovich, 0,V, Zhirov, A.R. Zhitnitsky and I.R. Zhitnit-
sky for numerous helpful discussions and especially to A.I.
Vainshtein for the detailed enelysis of the work,

o e
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Appendix A

SR for baryon residues into currents used have the form:

...5.'/_’
- et st)=t3,L T fbEE, L
e A )

-7 (o

zﬁ‘ea;aﬁﬂ&‘/w =Ht)-zmatEl”
287 5% explrm/t) = F(1) fz@a/;_ LIEL 4

# :55 a?, %y (34)
Zfé (& )= = s+ atcaft£L % )

These were obtained, with exception of (3A), in ref. EJ .

Appendix B

ﬁ’—imxea in the ground-state pole approximation have the
form according to ref, [Eﬂj

B(z})=- Ts r[éfwzv‘n-ﬁmx_n e
< 400%)f

Bcs2 =§§;m” (f—a{w(z.?.') (2B)

3(2-_-:) %-L__"W“'L FAlsm)-JE sedath2)]

+m T4
BAZ) = Zi’ X [2e calv£)ANZ) * = -'*’ ACZL ] o
Bin2)= At [ LE AN+ A057)] o
= ”’1:
7727 — i

WE Vi . =) F-4) (63)

B(-—-:) '“"3(::-);,-_ 2= = t/f"‘ 4){?3)

22

The difference between (6B) and (7B) accounting for -{;5

and "penguin" respectively is connected with that the 3 qu-pu:nla

contributes in (7B) , not in (6B).
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Table 1.
Table 2.

Table 3-
Table 4.
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Figure captions

Iwo types of diagrams appearing in general analysis
of the correlator: solid lines demote quarks, dashed
lines denote gluons, :

Diagram corresponding to the separable contribution of
05'6.

Diagram proportionel to the contribution & PPW@>
$o the correlator. '

Disgrams proportional to the contributions < ¥Y¥>
and <Y ww-ﬂl-?-q?} to the correlator.
Two~-baryon 1’5 =vertex,

Diagram proportional to the contribution <YPYEP>
to the correlator.

Pmction ACEX)= AP
continuum threshold So .

rmction ACZ2) = ACtyt3)  at two values of the
pair of the continuum thresholds ( Syp J Sz0 )

at three values of the

Diegrams corresponding to two- and three-point corre-
lators in the instanton field,

Diagrams proportional to the contribution < Y&G ?}
to the two- and three-point correlators.

Table captions

Baryon residues into currents used,

..S' ~waves in the soft-pion approximation and without -
accounting for the "penguin" contribution.

Full d" =WaAved.
P -waves in the ground-state pole approximation.
Deviations from AT = {/,'2 rule for P -waves.
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