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NON-ABELIAN CONSTANT FIELDS AND THE VACUUM CORRELATORS IN
QCD

A.I.Nil'shtein and Yu,F.Pinelis
Institute of Huclear Physics
630090, Novosibirsk-390, USSR

ABSTRACT

The nonperturbative effects in QCD, which are due to the
non~Abelian constant fields, are analysed, The nonrelativistic
polarization operatcrfﬂﬁ(gb is obtained in these fields, The
operator expansion is not applicable if the nonperturbative
corrections are larger than the relativistic corrections. At
high energies, it is poasible to make the analytic continua-
tion of the derived polarization operator from the under=-thre=
shold region to the physical by means of the continuation of
each operator expansion term individuelly. The Borel transform

T?(fj of the nonrelativistic polarization operator is sen-

gitive not only to the gluon condensate value but alsoe to the
vacuum field strﬁcture. The non-iAbelian constant fields don't
lead to the spontaneous chiral symmetry breaking but generate

the nonperturbative quark mass renormalization.

1, Introduction

One of the most important problems in QCL 1s the problem
of the vacuum state structure. The QCD vecuum differs drastically
from a pervurbative one, 1is complex structure is displayed in
ihe existence of the quark /i/ and gluon /2/ condensates in it.
S50 far the relative role of various vacuum fluctuations in the
vacuum Structure is, however, unlmown definitively. In view of
this, it is important to consider different models of the non=-
perturbative QCD vacuum. For this purpose, one can investigate
the dependence of the vacuun correlators properties on the vacuum
fluciuations form in certain models.,

A lot of phenomenological features of QCL are explained by
the dilute instenton gas model /3/. The consideration of the uni-
form Tield models is of interest, too, One can define these uniform

fields so that all the gauge-invariant quantities are constant in

gpace=-time, Such a definition implies that the vector potential

at one point is related to the vecior potential at any other point

by o gauge transformation /4/ :

B,(#) = U™ 00, 1) BooUlsa)s il .U 9)

- a
Then the gauge can be chosen so that the field strength tensuray

£
is constant, It is shownm in /4/ that the uniform fields are gene-

(1)

rated by the vector potentials ol two tiypes only.
The first type is gauge eouivalent to an Abelian potential
and corresponds to the so-called covariantly constant field, which

satisfies the gauge-invariant condition /5/ :

[E;\;GP_:@, (2)

vihere 3\ is a covarient derivative. In /5/ the wvacuum polari-
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zation due to the quantum fluctuations of the gauge field in the
presence of the covariantly constant field has been studied, and
the presence of & chromomagnetic field has been shown to lead to
the decrease of the vacuum energy. In the authors' paper /6/ the
vector polarization operator and the vacuum expectation values
in the covariantly constant field model have been enalysed, This
model is characterized by two invarients (for the gauge group
ST.F.GEE}}: ?—_%Giv C;l and @Q:fé de(;::)z, where fov is
a tensor dual to G;Qv . The first invariant cheracterizes the
gluon field intensity and g;{z characterizes the topological
charge density fluctuations, In /6/ it has been obiained in this
model that the quark confinement at arbitrary high energies fol=

lows from the analytical ‘properties of the polarization operator,

in case of 927{ 2 B

The second-type vector potentials ere gauge equivalent to the

constant, noncommuting potentials, The vecuum polarization in the
one-loop approximation for this field has been considered in 4/ .
Probably, the constant fields play the important role in QCD, if
the master-field /7/ is reasonable,The constant field configu-
retions were investigated in the framework of the Hamiltonian
approach for arbitrary number of colours N, in /8/.

In the present paper we consider the physical effects of the
constant fields which are exemplified by the nonrelativistic po-~
larization operator, We perform the calculations for the colour
group SUG(E} in the one-loop approximation taking into account
the external field exactly.The consideration for the other groups

is similar.

-

2, Nonreletivistic polarization operator

 The corresponding Green function should be known for in-
vestigation of the quantum processes with gquarks in a constant
field, Ve shall perform first the calculations in Fuclidean
space and pass to liinkowski space-time by means of VWick rota-
tion., We use the metric é;wf:— é;v in Buclidean spece., The
operator /) _ g‘EL is an integral of motion in the field

N

corresponding to the constant vector potentials, Therefore,
is a c=number in the momentum space and the Green function
calculation is an algebraic problem., The quark Green function,
representing itself a matrix in the spinor and color spaces, is

equal to

§0) = (P §0-Gm) (Fom)

L
0 = o S 5 ;}/ Wi 9 9
TR § é;.a;‘ 3 4; =L Oy +-I%,’E' 2. Cyié;“q:aééﬂxe?éij
Y L= 3 5 T ¥
S =[J,~JX#]/2 , ©£% are Pauli matrices; we have absorbed
the coupling constant g into the amplitudes of the fields).
The field strength tensor, chromoelectric and chromomagnetic

non-Abelian constant fields are equal to
(4)

: a§
Gj:,,fg B By 5 Gm/,% é?‘xG;K.

’, a arf-l
Hote that G./_W Gﬂv_: O in this field, From (3) and (4) we

obtain

§(r) - g o ﬁ)+ﬁ(sﬂ+€+m)
B+ ot H* [’)H*B) :

where



H= P24 ¥t - m?

g_afq‘f' JG"G'/E 3 é‘?q: )‘?_Mﬁ/.« (6)
ol = =2 (8%C% , B=-golctf

Y = (€%C2 - 4¢fT56 + 242 (547457) - 20",

ey
i

f

In (6) we use matrix notations: the sign "T" means a matrix
% i 2 2
(5; “/}e;)/z.‘}c:'{)"t('fjc)mﬂ

[« o
SN S
The nonrelativistic approximetion in Tuclidean space for

transposition:

the Green function (5) corresponds to the analytical continu-

ation from a real A, 1o the neighbourhood of the point -Cm
P oz~cmt A ((g} &« m) , when the space momenta are

small: /_E/ & 1 . In this case, the expression (5) for the

quark Green function becomes simpler:

/ N P VT e
FTWLL&}E):_ M_E = - - g -2 ,5
it , :
éc (8) = (€%~ 1B fm ) /4
\ VT #
where 'f’* (&J (p -r/"’i /'f'*l h,ﬂ 300‘:' {*}:‘1 JL:_T: {3;#‘[%% i
A i ’

Let us consider the nmnrelﬂtlu.s.u.c polarization operatcr

in the under-threshold region, where the squared total 4-mo=-

mentum of & heavy quark ¢ and entiquark Q is ?,2: 4?1*‘}64'1—- E) ’

53 E >0 s vie have:

fie)=-Chatr iaiade GLCES, N

(2.1 P s ?j‘“ Pag b

(8)

here ;&i ia the Green function of the antiquark 4 ;
.‘ﬂ"t'_

= N / ., In (8) the Lorentz-invariani averaging over

iyl A=

the field g% orientation is performed arter the calculation

O

of the polarization operator at Iixed field 5:‘ « vhen the
trace over the colour indices ig taken, lhe geuge-invariant
averaging -over E}f" orientation in a colour space becomes
1rivial. In the physical region ( £ < 0 ) the nonrelativistic
polarization operator can be obtained by the snalyticel conti=-

miation. Taking the integrsl over A in (8), we get

ey B
e [H + H (H’? 2% ) (Paeto/w)J

2z . 1) ;
where |L'|5: (E*/*“ )/JM + E . The expression (9) may be derived

atarting from the obvious relation:

gy AR ofr Lo B B (10)
S T e ety ;
i LR :",}"Ei ,_,?-l;' '.k_,_J__} 5
5 ,reE) is the nonz ivigtic CGreen function of Q
& 1 1% colour=gines G atates

is necessary o renoimalize the polarization opera-

tor {9}, e perform it, subitrecting from the integrand for
!(L—) in (9;, the value of this integrand at Is=s0, Bj‘=D. liore=-

over, it should be itaken into account that \f E(’( m® ;

if the nonrelativistic approximation is valid. liaking the cor-

regponding expansion and taking the integral over p , for ihe

—

renormalized nonrelativistiec polarization operator, we obtain:

' o o 7%
704 (1 Fee) + sl FENET) 1)

(11)

is a squared chromoeleciric fi=-

By

wiaere 3: 1l3‘:’/E ; E (G

eld, 56= (’t_f:u_x’:u)‘:’:.__ (&E’cc)ﬁ . Selow we shall omit the sign' i B

everywnere.,



For sufficienily large [ , one can neglect in (11)
the effecls connected with the wvacuum field. This means wac
absence of quark confinement in the vacuum field with & con-
stant vector potentisl, unlike the case ol covariantly cons-
tant field /6/. The leading field corrections for ﬁ'(E-) are
determined by the following formula (at 82 {(mEEpZ ) s
¥,

FT"(E al

Tey= - AIE g S CEST ' T %) ]

4T Vv L hzoe M {.:Emg Mﬁz ¥ '{2ﬂ+5) 2

o : (=} c_E-C
It follows from the obwvious relations, 5; = 3. P):.. 3
SCLL(EQ-L: 0 , that the matrix elements (’é!_*? }fg”) is equal

to

S
sl
Y

T EE T e,

e

The nonperturbative correction due to the operators
_&Ejhg to the nonrelativistiec polarization operator has
been obtained in /9/. The coefficient functions for these ope=
rators are leading among all the operators in the nppnprelati=-

vistic approximation, Substituting (13) into equation (12),
we obtain the result in the form independent of the field
shape, and this result agrees with /9/.In the case under con=-
sideration, the corresponding vecuum correlator KE‘S (T) oz
the chromoelectric fields /9/ is equal to

](5(’3) = 3¢ E¥ cos (92) > (14)

In applications the Borel transform /2/ of the polariza-

tion operator (11) may be useful. We get

1 E . i
ﬁ'(f} (j )‘%’z(w ﬁT?":*<Q?(P( £h1¢?>+2:1€'?'@ LES{%D/\_ (15) :

In the nonrelativistic approximation »T 3> 4 , Therefore,
% _&_Q“—- L‘Pj‘ , then the second term in (15) is much smaller
than unity.

Let us congider the averaging of the polarization opera-
tor over the vacuum fields. In case of the colour group SUC{E}
it follows from Lorentz invariance that a constant vacuum
field is characterized completely by the eigenvalues of the
matrix qu"-;{_ &Qﬁj-{sea /4/)., These eigenvalues satisfy the

equation

f‘-

}%‘F qu_ >\ ) -' G >‘+ 3 (,-VGJEC'?% (16)

The coefficients of this equation are related to the eigenva-

lues \! 8as follows

BYBS = — (A+hatds) ()
Gav Gou= 200t hedhat dods),

_I.H\.ll

({ojc G-;h G”F G!)u =, =6 ;\1}\2>\3 ¥

*) (=% Qo
All the eigenvalues A: are positive, The invariant R. A

: L

is expressed in terms of the explicitly gauge=invariant quan-

tities by means of the identity :
s g < aﬂ::'
6 Gi‘ﬂ' G-EFH Cmu Gug Cﬂ

rfr‘ Jf" s R

*) ‘
Note that,in this model,the sign of <é“j°(;" G,f,g Gg>
is opposite to that in instenton models.

9
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I ®

where 5{:& ! is the current generated by the
field. |

All the quantities averaged over the vacuum field orien-
tations depend on three invarianis }; {i= 1, 2, 3}, The 4i=
rect method of averaging is the integration over ﬁ; P
the invariants (17) are fixed. However, it is cmwe.‘nian'l: to
make use of an approach, which is similar io that used in /6/
for averaging .over the covariantly constant field orientation,

; n 2 . R b
Let us intreduce a unit vector LV ({j = *1) direcled at firss

ﬂ
along the zero axis: nf’; = g;.m . Then,

L.:FQ e {;; f.x;..u_gb'_: (19}
_&_E ; ‘EH C":"Q.,_ G’c:p {)ff.

Since the result is expressed in terms of the Loreniz scalars

after the averaging over 1:.':»_1 , one can multiply both .ides of
(15) by T%E 8( 1° + 1 ) and take the integral over é,« e AT=
i

- = q‘ & "
ter that, the integration over A becomes trivial. The

matrix Jn@ ~ can be diugumlizeg by a global gaugze transfor-
mation: .J -8 B - Acn}S“G. Therefore, there sre three ori-
hogonal vectors gﬂ‘: (im T3 24 3) of leng'tha (k) . These

vectors can be directed along the axes E; (im Yy 25 30 X%
follows from (19) that the correlator ﬁ“{{:) (15) averaged

over B; )
to (19) and (15)

' 4
o and {71_21-521.83 s We gel

IGE +@Wgaﬂ [XP(FC‘D 25 o) (@ cog)

Substituting the orthogonal vectors £ /:

and integrating over

)

10

depends on the field through the matrix ¢ - &mﬁj.

-

where S (}\z"‘;\s)ﬂg + }\2(}*1"}‘3)”;* As Aifhz)”f}

a_;'?'; }.m,2+ }\IL‘I.E-!-A}IL’?;, Jo 18 Bessel function: in (20, the

intesration is performed over the direction of a unit wvecuor

¥ ( Hz = 1), Going over to ihe energy repiresentation {gee,
—

B.Ze,/2/) for the polarization operaior ave: nged ovelr whe va-

"

cuun field orientailions we et

@)= -Am(fe e+ §

ek

sorpiacvs B4

4?119&2 3 mwh

vhere ™ is a hyper_eomelvric funcviomn, which can be expressed
via the Lerendre funciions. in (27) and in the following Ior=-
mulas the averaning means sihe invegiation over the veetor N
orientation ( Sdﬂﬁﬁﬁr-- ), unlike (8), (9) and (11)=(15).
Lei us note that the same saveraging, applied io the cor-

relator KE{*'G) (14}, given
' Py = 30, (wt)-4 T (WT) G5
Ky ) - { & (300r260-3,04)
A
the notailons are introduced afier (20}

3. Properties of the vacuum expectation values

The nonreletivisiic polarization operator jT(Ej (21)
represents itself one 0§&%EW examples of exact taking into
account the vacuum field in the vacuum correlators. Other
Imovm examples are the polarization operator of massless qu-
arks in the one=instanton field-i1ﬂf and the polarization
operator in the coveriantly constant field /6/.

Starting from the expression for the vacuum correlator,
in which the vacuum field is taken intoc account exactly, one

can study the important question on the operator expansion.,

11



Let us consgider first the correlators in the under=threshold
regisn, where L?Ee. 4%1’?1 Q.Q}O. In this case, the polarization
operator of massless quarks in the one-insianion field con=-
taing, as it is }mem, an operator expansion term, proportio=
nal*{o G*IT, and a term, exponentially small as e*&f (et

e = o ), and not expanded over the inverse powers of Qz
/10/. The latter term doesn't destroy the applicability of
the operator expansion owing to its exponential smallness at
G’_. > &© , However, this term can significantly affeci the
polarization operator properties at moderate G .

As 11%1&5 been shown in /6/, the operator expension for
the polarization operator in the under-ihreshold region is
valid for the case of a covariantly consiant field, Ther~ rre
gll the powers of 4/@‘} in the operator expansion. However,
all the matrix elemenis containing covariant derivatives oz,-.i
are zero. There are also the terms exponentially small as -
o, gO (4B Fr(eiyt) ) at QEs o .
These terms are very important for a behaviour of the polari-
zation operator at moderate (2 and also in the physical
region.

The nonrelativistic polarization operator properties in
a constant field is of interest, too, Using (21), one can ve-
rify easily that the operator expansion takes place in the

under-threshold region (compare with (12)):

1) N 20+ 54 ) (23)
Tr@):_-%r E';-, 44 m2£E3 EA o 7 2? ["E(h 2) (E) '1'0{’1&; =

7
Formula (23) is valid at £ > € /iw " , The corrections

. ; . = t‘}i"‘
incorporated in (23) correspond to the operators & .(?-E 15 ’

s

whereag the neglecied terms ‘__. J_/bﬁ/, correspond to the ope-

rators including the chromomagnetlc Tield ’?{’, s, Covariant
s g o & . Pkl R
derivatives 2 , or high powers ol é . Hote thai the

—_—
e o2

- exponentially small terms are absent in ﬁh(E) {21). This

point are displayed by the analytical properties of ]F-‘L(E‘j .
One cen operate in terms of the parameters & and (C
because Lhe integration region over the vector |n direction
ig finite. The series (23) (the contribution of the operators
é .g”” ) is reduced o éi/g ME %  at low energies,

< L-J . Therefore, in this case equation (23) represemu

itself an expension of the aquare root (/j_+ &?/JTMEUJEJ 2 5

l

L

Jfr‘*‘;EH s ”rE']' ___6_.2_-—11 “l>
T e 44'-‘[»’111 é? Ew .

If all the invariants )\ are of the same order (let us

L
refer to this cape as general) then &€ ~ t._,a.: , and the value
of correction in (23) is of the order of Eﬁ/mE?" —~
f"(E/;ﬂ E-M/"Ejzf £ B/ ,at relatively high energies £ ) o .
The nonperturbative effects in this field become compared
with the perturbative effects not at £~ m@m% , when
the operator f{;r [’;—-M G;, gives the contribution of order
of unity, but at lower energies F~ /pﬂ when 6/‘{%@3*1 .
At &3 > the nonperturbative effects are compared with
the relativisiic corrections, or smaller. At lower cnergiecs
cht/m & E LD +he sum of the contributions of the ope=-
rators E@Ehé (n= 0, 1, +..) should be taken into acco-
unt. Consequently, we cannot restrict ourselves to a contri-
bution of the operator G-:Q to (jT(E.J provided the nonper-
turbative effects are larger than the relativistic corrections.

This means ihait the operator expansion iz noil applicable in

q

15



this situation,

1t has been shown in /9/ that it is necessary io take

. . 20
into account the contributiowns of all operators EQ, E to

the nonrelativistiic polarization operator irn the region of
exceeding of Lthe nonperturbative effects under lhe relativis=-
iic corrections in case of the dilute instanton gas, This is
gimilar to the conclusicn derived above on the operator ex-
pansion applicabilitiy.

Thus, taeking the leading coniribution to ﬁ(‘[:-). we get

&)= jﬁm<(E+ m) 1> (24)

and, correspondingly,

f ~) = (‘fr (m‘tj <€-;¢P( hé/m{.‘>> (25)

lote that, with the relativistic correction E /,, %taken into

account, we have the following region of the operator expan-
sion applicability: 4 « E/L L Vd> . Lmphasize
that the operator expansion is not applicable in all the oL-

her cases of the relations between }. with neglect of the

¢ 2
relativ‘is"cic corrections (see below).
Let us consider now & question on the sensitivity of
’ﬁ”(t{') (20) to the vacuum field structure in this model,
i.,e. to the invariants >\; (the gluon condensate value
(PG
able T - EC/A!W. and the paramel.erl'z Cﬁ‘-’l (= ({.C" >/2)

The parameter ”z should be small for an applicability of

ig fixed). We introduce the dimensionless vari-

the nonrelativistic approximation, 7} « | . Then, we change
over to the variables AL: ){C—Z , which satisfy the rela-

14

&,

tion :

wo introduce she Dwiciion

where [i.(T)= fFU ~% (Eﬂrf?i ig {the periurbative correlaior:
.:IL:LL/C and ;fﬁ E;‘C (o) .« There are four tynes ol Lhe
relations between the invariunts A . Let us consider the
characteriastic cases.

a) f\i.—. Aiz /\3 = A . Then _Q.?: A ,-5'-2:21‘\ , and from
(26) we have A = i/{g . The integral over the vector E‘-._

orientations is trivial in this case, Ve get
F(r) = exp(-2T/3) , (28)

(the term with the Bessel function is omitted according to
the arguments mentioned above).

b) AJ_: AEE )g 4 A..?. = A . It follows from (26) that A
and A= (1- ).:1)/2}.- 1/2)\. Therefore, at T » ) we have

y s
F(T) =expl-21)) §’e'xpc TA) > s () + —;Eﬁ: »(29)
onge x =2 g T

i,e, the operator expansion is not applicable under this con=-
dition, It is not hard to see that the function F, (T)
be expanded in a series of T , if T & T Then, the operator
expansion is not applicable in the region T~X , too., The
function Fz (T) can be expanded in a geries of T if T(("l/ﬁ’.
In this case the non-leading terms of F(T) expansion (of
the order of 7 and hiézr} contain the powers of -’J_/}‘ ; in

15



order to neglect these terms, it is neccssary for them to be

.
much smaller than the contribution of ihe uperzstor L__,,l . This

condition restricts the region of the applicability of (20) and

[ |

(27): R & }\3"’2 and T 5> 2/ . Then the terms of the ex~—

pansion in (27), proportional to the variable T , cancel out,.
The following term of FE('T'/‘. , proportional to TS, corresponds
to the contribution of the operator GE . This contribution
is larger than the relativistic correction of order of (m‘i:‘j_i

= & 5 'T' ‘>')|2 . 50, the operator expansion exiatsjin the region

i Gl e P (30)

7
but iz not applicable without taking into account of the rela-
tivistic corrections in this case, too.For this relation be-

tween the invariants A we have (see (17) and (18)):
—'djz S (GFJ?& R E;S
C} A'l: AIEA‘>> A'; = >\
Aml s hafeRn €4 v G
- 7 ; N
F(’T‘): e * + z%(g‘l'gn% —Cb(ﬁ.zj))

C{, (;{) is a cosine-integral function, X w 0.57Tane
d) A LN K f\s . In this case, for T)»A,z )

we have:
F(T) = ,\";Eemgc () +gwﬂw(r? M

. It follows from (26) that

(31)

It is interesting that a constant field strength tensor
Q.
G g doesn't determine the quark-antiquark dynamics, The
Wu-Yang ambiguity tekes place for the uniform fields /4/.

If one of the invariants }\L is zero (if two }: are zero,

16

then Ej = 0 ), then the corresponding constant tensor

can be also generated by an Abelian vector potential

F,_ - }f/'g_ . Lt i8 necessary for the existence of this
mblguly:,r that the equation L—:rq' C* =({ be fulfilled (for
non=-Abelian constant field this equallt;f is an identity).

In this case, it follows from (13) of /6/ that
% I If s w_t- 3 2
{‘; (= [4—€ ,}/t o A irT/g,ra (33)

Bvidently, the form of the function F; [q‘?) substantially
differs from the corresponding function, obtained from (27)
at ).3: ot SRR . }‘1 and }\2 are of the same order, then

iz

_ (34)
Folr) = Zj:d‘f@xp 4

3‘?’- ﬂhﬂ#‘fﬂzih "f/

2

vhere Ai-_;ﬂ;i:-g A £ 4 . Note that FH-AA'. ij&zg__mq at
laxge T L AF L )s

The examples discussed above demonstrate explicitly that
the correlator ﬁ({") depends strongly on the relations be=
tween AE y 1.2, on the vacuum field structure, This rejects
the related conclusions in /f11/,

A study of the properties of the polarization operator in
a constant field, in the physical region, is alsc of interest
in view of the question on the vacuum siructure.The analytical
continuation to the physical region of the polarization opera-
tor of light and heavy gquarks in the instanton field was con=-
gsidered in /9,12/. The guestion on the operator expansion in
this region was considered as well, The oscillations of the

imaginary part of the polarization operator was found in /9/.

i}



These oscillations in the physical region are connected wiih

the exisience of the exponentiaelly small terms in the under-
2

ihreshold region (at C;‘—% ©c ), LBvidently, Lne ogelllations

violate the applieability of the operator exvansion.lItl was

shovn in /6/ thet the analysicel continuation of the polari-
zation operator jf (E-_-) ; Obftained in the cpe=loop approxing- A
tiom in a covariently constant field, from the under-threshold

region 10 the physical leads to the absence of the imeginary
parl o TMLE) . This means the quark confinemenl in these
ield:s:, Then, the usuel dispersion relations are violated.

it 18 convenient to make the analytical continuation,
starting from (21) for W(E—:} . oince the region of integra-
tion in (_21} is finite, the value of oy varies in a finite

region, too. Due tc the convergence of a hypergeometric series

F(ﬂ,@j'f-5%> ingide bLhe L:r‘t*le, f?—i < i , one cAn u8c
expansion of & hypergesnciiie funciion at E17°% sy X { .
D o I rrmg FETe 0 S
!Ebwmmﬁﬁ Gn1mn;&meweth{EV}M&;F%&uﬁiiame

are of the same order), That is why ome can use, in this field,
a procedure of the neive anelytical continuation of each ope-
rator expansion term individually, The conditions of applica-
bility of the operator expansion in the physical region are

the same as in the under-threshold region, llaking the analy-
tical cnntipuﬂtion of jT(Ej (21) to the physical region

( E2EET ), we get:

Y b
e - <( A.E:L}“E) 28(%1& E) ( ‘ﬁ“ﬁ)% (35) ¢
6 (- £h0) + 31 S [PEIFER -2t 8)-1 4

e e ‘
LE‘(L;—E){ET%} (L?)ZF(: -453

In (35) we have used the formula of the analytical cintillus=

tion of a hypergeometric function F(&ijﬁ_;%E to the domain

i
&

[31‘> 1 . Then we obtain

gt u"_?
N Y r<5—"4mEb&' E(E -ﬂmm) %E‘E_J IEL_ k. UL)F M_H‘{. :,:;\1

(36]

Tt is seen from (36) that a constant vacuum field modiTies
the cross section of the e'e” annihilation into & heavy quark
and antiquark. In the general case of the relations belween
}E , One can neglect the second term in (306 lLecause ii is
compared with the relativistic correciion, In case o¢f a slrong
inequality between ) , the second ferm is small, too, Ve
can neglect this term in the region where the ncnperturb&tive-
effects are significant., Then, one can verify, with the use
of (21) and (36), that the usual dispersion relation is wvalid,
It is seen from (36) that a cut of the polarization ope=-
rafor in a constant field is shifted in compariscn with the
cage when the field is absent: i.e. & constant field generates
a mass gap. However, the nonperturbative effects due to the
field are not reduced only to the quark mass rencrmalization
A ; because of the averaging over the vector @ ori-

entations, One can interpret this mass renormalization as the

going over from the current quarks 1o the constitueni ones.

From (25) at T ©°° we get:
: f 491
am = (hg+ }11‘*}3"““:‘“7")%)/’?;»';1 w1
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It follows from (36} that a constanl field doesn't gene-
rate any resonances, Previously /6/, we have shown that the
bound states are absenl in e covariantly constant field (in
the one~loop approximation). Thus, we concluce that the field
inhomogeneity is wvery important for o resonance formation.

One of the fundamental problems in QU0 is o clarification
of the spontaneous chiral symmetry breaking mechanism, One of
the way to resolve this problem is to seach for the Ffield con-
figurations providing such & breaking, Storting from the defi-
nitlon of the chiral parameter of ihe order (L;7+> y 4in the
casc under consideration ( P,M is an integral of moition) we

have (see notations after (3)):

B/
(F¥y= b m('ﬁ.g*’*q efpx[ﬂi ngg_“- 1 ] (38)

130 $Lw pPLm® P

here lthe {race is taken over both the Lorents and colour ine-

dices; the averaging corresponds to the integraticn over P, :

orientations, Using (5) and (6) we get: @
gﬁp W34 ol H/2 + P4 R . e
<q’w> g (E,H. [:Hei‘i'd\Hz‘*‘FH y P?"W'll zl(Fq-fr“i}%

It follows from (39) that (f"#) “~ é?f’l:l' in the
chiral limit, i.e, the spontaneous chiral symmetry breaking
is absent in a constant field, For large m , the quark conden=-

sate generated by the field is equal to

<"-h|’-‘i"> it }-:11‘?1.%3*_}1}«3 F L:«aw?\5‘)&‘}\1+llh;+};}~3)+?)«1111;/2 (40)
~ 2hEm 42072m3
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where ) : are the eigenvalues of the matrix J“{f » Using

(17), we can represent (¢ %> in the form (413
4

By _’_(&f‘:r‘?‘i‘;b) _‘i___._,_d Q- 4 Jehla 6 c ]
{LII"‘F1>- f-;gj'r—l_ir": i izowﬁmg [<J,J"" [J).P'>+12 e G"’\ff«-v‘i&i_ﬁ> 5

In /13/ the contribution of heavy gquarks to the effective
Lagrangian ;(Eﬂ; m/} was obtained in the one-loop approxi-
mation with taking into account the gluon operators of dimen=-
sions 4, 6, 8. Since (fif‘f"):ﬁ%-fﬂﬂ(’@,m)), it was obtained
also the corresponding expansion of {yy> ., However, in 713/

- oéd ~ &
the operators containing the current c?(f_f‘*: _9_1 e PR
were not considered, From (41) the corresponding contribution

to the gauge field Lagrangian is found:

(42)
Zé’j’; 38 48 :'r? 1? oy wa G‘H‘
eui-c ¢ ]
ZQOT.Z 1 i:(‘:l!"" t};‘) 12_ (é ,-w ‘L?C )
here M is a regulator mass, If we put Jﬂq' =4 in (42},

then this formule agrees with the result of /13/.

4. Conclusions

The enalytical calculation of the nonrelativistic polari-.
zation operator ﬁ(&) permits one to investigate the pro-
perties of ﬁ'{g) in the physical region as well as in the
under-threshold region, The impossibility to use the operator
expansion for the nonrelativistic systems in the region, where
the nonperturbative corrections are larger than the rclativis-

tic corrections, is most likely to hold for the wide class of
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thie wvacuum field confipguruaiions, The posziplliiy of The ance
lytical continuvation of the operstor expunsicn scries bo the
physical region &i hizh encugh energies ic conmectoed with the

abscnee of the exponenvielly small terms in the uncer-thres-

Hold rézion, in the Tield under conslderciion, The correlaior

o : NE ok 2 i Wk .

T it dependsz strongly on the vacuum Iield sétruciure as

ad - “
well 28 on the gluon condenseie value, The example ol the Wu=
Yang ambiguity shows expliciily that ihe vebiiviour of ths po-
Jarization operaior in the vacuum Jields with the different
gtrucires may be sc shat the eflfect of ithe field of one type
connot be dmitated by the elfeey of another fleld of any gluon

condensate magniinde,

‘he consideration of Thc vacuum expeciation values in ihe
fielés of certaiﬁ {¥pes mey be useful to obtain the nodel-in-
depencent relations. Ve have demonsirated this point by ihe
calculation of the lleavy auark condensate value.

The analytical invesiigation of -the cnrrelatars in cer-
tain vaeunm Tields may be very imporitant to clarify some theo=-
retical ouestions, especially, iT the efrfective field saiuro=
ting the vacuum expectation values in the low=energy regiorn,

exists in QCD.
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