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ABSTRACT

It is shown that the use of relativistic Hartree-FPock
equations in en external field, Brueckner orbitals and a ma-
ny-body perturbation theory provides, as & rule, a 143% accu-
racy of atomic calculations. To control the accuracy, the
energy levels and the fine and hyperfine structure intervals
as well ag the El-amplitudes for s-p transitions in Cas have
been calculated. The parity-violating El-amplitude for the
6e~Ts transition has been found: < 7s(Dp|€:>= (0.48 ra.as)-ic?'“;
i(_’-{?wﬂ’k’) (-ieas) where Gw is the weak charge of the
nucleus and N is the number of neutrons. The experimental date
in Ref. /1/ make it possible to find a weak nuclear charge of
13333, Qw = -?3.415.15‘5, and the Weinberg angle 2in* Bw a
= 0.23710.036%0.03.



Recently, first results of the measurements of parity
violating effects in the 68 - Ts transition in Cas have been
published f1;. The more accurate meesurements coupled with an
increase in the accuracy of calculation have the pofential of
checking the unified theories of weak and electromagnetic in-
teractions. The parity-violating El-amplitude for the 6s8-Ts
transition in Cs has previously been calculated by the effec-
tive potential method and by the other semi-empirical me-
thudafz'sf. The accuracy of these calculationa is not, however,
gufficiently high. In the most recent and, apparently, most
accurate calnulatiunf , the accuracy constitutes about 10%,
according to the authors' estimation.

The other posegible way is & calculation by the relativis-
tic¢ Hartree-Fock (RHF) method. However, without taking into
account the correlation correctlion, up to the second order of
perturbation theory in the residual Coulomb interaction, such
calculations are not accurate enough (their accuracy ranges
between 15 and 30%). At the same time, taking into account
these corrections enables the calculational accuracy to be
drastically improved (see, e.g., the energy, fine and hyperfi-
ne structure calculations in Refs. /7/ and /8/). In the pre=-
sent paper we have employed somewhat different method which
reduces, in fact, to the summation of the series of dominating
disgrams in all the orders of perturbation theoxry.

It was noted in Refs. /9/, /8/ and /T7/ that the amgrama,
which are equivelent to the introduction of an additional non-
~-local potential acting on an external electron, give the main
contribution to & correlation correction. These diagrams can
be taken into account already in the single-particle orbitals.
This approach is close to the method of Brueckner orbitels, or
natural orbitals (ses, e.g., Ref. /9/). The other many-body
effects are teken into consideration by means of the Hartree-
~Fock method for the extermsl field (the random phase approxi-
mation -~ RPA) and & many-body perturbatlon theory. For the pa-
rity~-violating E1-amplitude of the 6s8-T7s transition in Cs, this
calculation provides an accuracy of 1#3%. We have also calcula-
ted, by the same method, a number of energy levels, fine and
hyperfine structure intervals, and oscillator strengths.



Hertree-Fock calculation of E1{(6s = Ts) -~ amplitude have
been cerried out in Ref. 23 « The result is in accordance with
corresponding contribution caslculated in pregent work (Table 4,

HF, l=form, columﬂg].

As it has become known to us from Ref. /6/, the many-body
calculation of the Ej-amplitude for the 63-Ts tranaition has
been made in Ref. /10/. However, the result of thig calcula-
tion, cited in Ref. /6/, is 20% larger than our result.

2. Choice of a gingle-particle Hemiltonisan

In solving the problems of atomic physics, we usually
divide the exact Hemiltonisn of an atom by two parts: the
first part is sum of the gingle-particle Hamiltonians allowing
an exact numerical solution, and the gecond one represents the
remaining ('residusl’) interaction which can be taken into ac-
count in terms of perturbation theory.

A
H="7 R (n)ey (1)
where i

H.=£F+(ﬁ*i)““"%‘:+v (2)

Here ;I and ‘ﬁ are Dirac matrices, Z is the nuclear charge
and /N is the number of electrons ( h=c=1 )

N
U L) =
L-CJ tmd

The standard method of calculations (the RHF method) consists
in that the potential 1f is chosen in such & way that there
are no first-order corrections to the wave function with exci-
tation of one electron. In other words the equation represen-
ted graphically in Figure 1 must be solved in s self-consis—
tent way. If we consider the atom with one electron outside
the closed shells (the core), it is natural to use the frozen-
-core approximation (the e approximation, see Refa. /11/
and /12/). In this case, only the core orbitals are determined
according to the self-congistent equation represented in Figu-
re 1. The potentiallhas the form

V o V.{' e Vr-rc.v':« (4)

Here \/{ and Ue.p& are usual direct and exchange interactions
occuring in Hartree—Fuck equations:

W= EZ 3 *(’z‘)',b(x)d %

cwd

Verel = e.g ji’ f‘i*’“}d 2 ¥ (V)

el

(5)

The sum ig teken over the electrons from the closed shellg.
The states of the external electron are calculated in the
field of the frozen core. They turn out to be orthogonal to
the closed orbitals, since all the states correspond to the
same single-particle Hamiltonian (see, e.g., Refs. /7,11,12/).
Thus, a compleie set of single-particle states naturally eri-
ses. In this bagis, there is no difficulty in calculating, for
instance, the correlation correction to the ionization energy
of an extermal electron, which is determined by the diagrams
in Figure 2 (Ref. /7/).

The correlation correction to energy can be taken into
consideration in the other way. Let us add to V in formula
(4) the nonlocal correlation potential Veorr chosen so that
its average value for the state of the extermal electron, coin-
cides with the correlation correction to energy:

‘?En'f- =< o] Vcou.'d?
V-= V.{ s Ver.c.ﬁ . 2 Vc.nt.t. (6)
Vc.a-;-; f" ~ jZ(i‘i; E.) ‘f{i.:) JI‘Z;

It is easy to write the correlation potential explicitly. For
exemple, & part of the mass operator S covr , corresponding to
Figure 2a, is of the form

E)EIBE) G )£ 4 ()
@) =, 2,d ', Bt ' =
TN O S tion, &

Here we denote the core orbitals by the Latin letters n and
m and the states outside the core by the Greek letters o ,
p and Yy . The expressions for the contributions to Veorr ,
which correspond to the graphs b, ¢ and d (Fig. 2) can de
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written in & similer mammer. In view of the fact that we take
into account the interaction of the external electron with the
closed shells, it is clear that Veowr conserves the orbital

£ and total | angular momenta of the electron. Mathemati-
cally, this is & consequence of the fact that in formula (7)
the sums are taken over ell the projections of the angular mo-
mentum of the gtates n , £ and ¢ « Thus, we have, really, a
number of uperators, each acting on the wave functions of clec-
trons with definite £ and | . The anguler coefficients in

c;:ﬁijﬁﬂ{d} are calculated analytically and coincide with

the coefficients for the corresponding graphs in Ref. /7/. Note
that the parameter E 4in formmla (7) is not yet fixed. It is
obvious that one should put E=E, in order that the average
value <o/Veorn|®) coincide with the correction to the energy
of the state ol calculated according to the graphs in Pigu-
re 2. To get an orthonormalized set of orbitals, we are need in
a common potential for all the states with fixed £ and j . In
view of thig, the parameter E for the given £ and J should
be fixed. For instance, in Cs we usually put E=Ess for &€=0
and jz‘_-;x s E=Egpy, for £ = 1 and j=%— » e%c¢. Thus, E is cho=-
sen equal to the energy of the lowest external electron atate
with given £ and.j « In this naae,{#ilbiat1iﬁj> is exactly
the same as the correlation correction only for these lowest
states. For the other excited states of the atom, no exact coine-
cidence occurs. However, the energy denominator in formula (7)
always include the energy, at least, of one electron from the
closed shells, which 1s considerably higher than the energy of
the external electron. For this reason, the difference of

(x]%&;tmfdﬂh from the correlation correction, calculated in
terms of perturbation theory, does not exceced 5% for the states
of the discrete spectrum end for the siates of the contimuous
spectrum with not very high energy. The correlstion corrections
to the energies and wave functions of the internal elecirons
are teken into account by ﬁﬁt1@ﬁJ substantially worse as compa-
red with the external electrons. But these corrections have in=
fluence on the characteristics of the externsl electrons, we

are finally interestéd in, only in the higheat ordersa in the
residual Coulomb interaction.

The method of calculating Veerr 18 similar to that used
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for the calculation of correlation corrections in Refs. /7/

and /8/. The sums in formulae of the type (7) have been celcu-
lated explicitly, with the excited states with £ < 4 taken
into account. To calculate the sum over the discrete spectrum,
for each ¢ and hf three lower excited states have been ta-
ken into consideration. The contribution from the higher sta-
tes has been taken into account by means of the quasiclessi-
cal asymptotic formula. Integration over the states of the
continuous spectrum has been performed by the Sympson method
within the region 0.1 Ry £ E € 25 Ry. The contribution of the
states with E < 0.1 Ry hes been also taken into account by
means of the asymptotic formula. The contribution of the ener-
gies B > 25 Ry is negligibly small. The 44, 5p and 58 shells
have been taken into account in the sum over the occupied sta-
tes. The contribution from the deeper shells is negligibly
small. According to control calculetions made in Ref. /7/, the
purely computational error of such a correlation-correction
calculation constitutes 1+2%. Since the correlation correction
itself ia not large, this accuracy well suits us. Note that at
large distances, the potential Veorr 1is transformed into a
locel Van derWaals (polarization) potential:

£ e’

0 e =

Veors 2

where o is the polarizability of the core. Having been ob-
teined while calculating Veo:r , the quantity o % 184
colncidea with the polarizability of the C; ion ealculated
in Ref. /6/.

To eliminate the first- and second-order corrections in

tron, (see equation (3)), it is necessary that sll the wave
functions, which enter into equationa (5) and (7), be themsel-
ves the eigenfunections of the Hamiltonian H. {gee equation
{2}). Therefore, equations (2), (5), (6) and (7), should be
golved in a self-consistent way. This can be performed by means
of iterations, starting with Hartree-Fock orbitals. However,

"

in -:r'- - ™~ - ] -y ¥
the Veorr caleulation takes = long computer time. Therefore
practically we have calculated V..o only once using the Hart-

ree-Fock orbitals, and sgsuming it unchangesble in iterstions,



For control, we have made one iteration; taking into account
the variation of lko: . The change of all the quantities, we
are interested in, hes turned out to be negligibly amall.

The energiea for the statea of the extermal electron,
which have been calculated by the way described above, are gi-
ven in the last but one column of Table 1. The comparison with
exper1mentf13f demonsirates that the accuracy of calculation
of the energies and fine-structure intervals for the s and p
levels is about 1%. For comparison, we also present in the
Table the energies obtained previously in Ref. /7/ within the
framework of the RHF method without the correlation correction
and with the correlation correction

calnulaﬁﬁgmgging the perturbation theory. In the
present paper we make for Veosy mot in the first order of per-
turbation theory but includa it in the single-particle Hamil=-
tonien, i.e. we sum a definite series of correlation diagrems,
corresponding to iteration of the diagrams in Figure 2. For
this reason, the values given in the third and fourth columns
of Table 1 are somewhat different from each other, even for

the lower 6s, 6p and 54 states.

It is worth emphessizing that the single-particle states,
found in such s way, practically coincide with the Brueckner
orbitals (see, e.g., Ref. /9/) and despite some distinction in
their definitions, we will refer to the orbitals in the poten-
tial (6) as the Brueckner ones. It is known from the calcule-
tions of the hyperfine structure of alkaline atoma (mee
Refs. /9,12,14 and 8/) that the diagrams which reduce to the
renormalization of the wave function of the external electron,
give the main coptribution to the correlation correction for
the & and fu, levels. In view of this, the Brueckner orbitaels
are adequate for calculation of the hyperfine-structure (see
Section 5). In addition, the next Section will show that the
amplitudes of the s-p El-transitions are very well reproduced
on the Brueckner orbitals. With this in mind, we think that
this technique is also suited for calculation of the effects
caused by weak interactions. We note that the employment of
the Brueckner orbitels instead of the Hartree-Fock ones is use-
less if the correlation graphs, which do not reduce to the re-
normalization of the wave function of the external electron,

R
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give & large contribution to the physicel quantities we are
going to calculate.

III. Calculetion of the emn]lditudes of
allowed El-trangitions

The interaction between an atom and an electromsgnetie
wave is usually described by means of the dipole-moment opera-
tor (length form):

M
5 JJ:EZ :r: (8)

:
w24

This corresponds to the choice of the gauge for the vector-
-potential of a wave, A(¢)=0 ., The other, often used form is

the velocity form (gauge p = 0):

Y
pIa-ie 5 g (9)
) W

(=i
where @ is the phcton frequency and rz is the Dirac matrix.
The amplitude of transition between the exact physical states
is a gauge-invariant quantity. Hence, the comparigon of the
amplitudes, calculated according to equations (8) and (9), is
a good test of the accuracy of calculations. The matter is
that the nonlocal exchange and correlation potentials, occu-
ring in the Hamiltonian (2) give rise to the violation of the
gauge invariance, which should restore only after taking into
account the remeining many-body effects.

The reduced matrix elements of the operators (8) and (9)
between the single particle orbitals |1) and |2;> are of the

form
<2” Df!} \1)=e (-4) o lﬁfjlﬂ)(zﬁ"'f)fm {iz i.‘f;}
Xg(fzfi*'?a?;)t“% (10)

£ pax = Max (&g 5¢2) " [¢.-€.|=1
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Here ‘F and 5 are the upper and lower components of the wave
function

?l/: -.i'-- FJZJ{M (12)
CRRY NI

Aa
szem ia the spherical spinor, and ﬁ-=‘2j-~f « At 22 O the
sign of f is chosen positive.

The first column of Table 2 gives, as en illuatration, the
radial integrals in the 6s-6p,, transition in Cs, which have
been calculated using the Hartree-Fock and Brueckner orbitala
in the 1 and v forms. Here and below, in the v-form calculati-
ons we use the exact experimental difference in energies betwe-
en the physical statea as the frequency. However, it is worth
mentioning that for the Brueckner orbitals, the difference be-
tween the experimentel and calculated frequency is equal to
about 1%. For convenience in the comparison with the previous
works, we give, instead of the oscillator strengths, the effec-
tive radial integrals proportional to the amplitudes (10) and
(11). Here, the common factor is such that in the l-form

R=[(f.4,+gg.)ndn (13)

The radial integrals, presented in the Tables in the columns
"experiment', have been found from the corresponding experimen-
tal oscillator strengths (Refs. /15,16/) according to formula
(10). We would like to note that we have always used the expe-
rimental frequencies. The signs of radial integrals have been
determined only from calculation.

The corrections to the single-particle amplitude of the
transition (10),6(11) occur already in the first order in the
regidual interaction with taking into account the polarization
of the closed shells by an external electric field., Figure 3

10

illustrates all four first-order diagrams contributing to the
B1-amplitude. The corresponding expressions have the form

m i e gt @ catan) il Bl
<2{IDHi>q_£ 3 Ei"'Eu_El'E,‘

W gyt g (2ana) I DlINY
<2”D”i>s‘£— E Es*+E.-E,-E,

(14)

Atﬂ*ﬂ{ijhh} gk(ﬂﬂ&i)<ﬂﬂﬁud>
K Jn ju E, +E, -E,Ex

QUBlep =) Y

hdk

otk {4y o] Qe(2%ne)<L DI
{kj"j"'} E,*E.~E;~Ey

2liBllgy,=2_ 4
nek

Here Qg (1,2,3,4) is the matrix element of the Coulomb inter-

action:

Q, (1234)=(-1)
ik k
g (ke 68,)] i i ﬂ){ ) ﬂi_‘fﬁ)jif‘?,) )E(h)%ﬂﬁﬁ, o, () .,

i

.+;+~ '1_1 - . 7
h¥ju*ithy ‘V(Iﬁtf.)(ij;_*i}(zﬂfi)(zfi'fi)g(k"'{’.rcv}r

(15)

g@f)-—- [ 1 for even X

Q0 for odd X s

The zero-order amplitudes {WHLEIIA} in the right-hand sidea
of equations (14) are given by formulae (10), or (11). It is
worth emphasizing that here the v-form(matrix element (all f}.Hd},
formula (11))includes the photon frequency in the 1 —» 2 transi-
tion rather than the energy difference E,-E. . The coniribu-
tion of the core poiarization (14) to the amplitude of the

6s —» 6py, transition is given in Table 2. The third column
presents the total contribution of the zeroth and first orders.
The influence of the core polarization on the El-amplitude is

11



>asible to take into account more exactly, by solving the Hart-
2e=Fock equations in an extermal electric field. Thie is equi-~
ilent to iteration of the graphs in Figure 3 (RPA approxima-
ion). We have made such a calculation. The contribution of the
.gh orders to the core polarization has turned out to be very
1mll for the amplitudes corresponding to the transitions of

1e external electron. Table 2 demonstrates that the using of
1@ Brueckner orbitals in calculations provides an accuracy of
'« This considerably better than the accuracy of the calcula-
on made with the help of Hartree-Fock orbitels. Thus, it is
gsible to draw conclusion that the trarnsition to Brueckmer
bitals has one to take into account the correlation correcti-
8 practically exactly. In addition, it is meen that the dif-
rence between the amplitudes calculated in 1 and v forms is
nparable with the deviation from experiment and can serve as

e accuracy test in the ceses when the experimental data are
gent.

Table 3 ligte the wvalues of the El-amplitudes, calculated
th the use of Brueckner orbitels in 1 and v forms with the
*e polarization taken into account. It is seen that for the
incipal 68 — 6p, T8 — '?p, and 6p - 78 transitions determi-
1g the value of the p-odd El-amplitude of the 6s —» Ts tran-
iion (see Ref. /3/), the agouracy is about 1%.

IV. The self-consistent equations with the
weak interaction taken into account

In the Weinberg-Salam model, the Hamiltonlan of a parity
lating weak interaction between the eleciron and the nucleus,
ch is due to the product of the electron axial current by s
leon vector one, is of the form

h}"

re G is the Fermi comstent, (3, =~ [+ x(t,'v,@;ﬂ’-ﬁw-i):]
the weak charge of the nucleus, A and £ are the number of

trons and protona in the nucleus, ﬁw is the Weinberg angle,
.= 18 the Dirac matrix,

“_._utﬁf(z)Qwéﬁ,- (16)
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and f’ﬁ) is the nucleon density normalized per unity. We as-
sume that the distributions of the neutron and proton densi-
ties colncide and make use of the standard formule

o petinias (18)
)0 g—n—‘ + i

where ( is the normalization conatant, Ttw = 1. 10:43 )r“'l =
= 5,61 fm and D = 0.57 fm (Ref. /17/). The matrix ele-
ment of the operator (16) depend rather weakly on a particu-
lar form of density. For instance, in varying the radius

of the nucleus by 10% (this is considerably larger as compa-
red with the experimental error in the determinastion of %, )
the matrix element change less than by 1%.

The weak interaction is taken into account in a linear
approximation. Thias 1a convenlent to do, including the weak
interaction in the self-consistent equations for single-par-
ticle orbitals(as this was done, e.g., in Ref. /18/) rather
than in terms of many-body perturbation theory:

ltlpr'b}?:)?:é? €19)

where E‘,’ differs from Ho by the substitution of the func-
tiona )P instead of in formulae (5) and (7). In the line
ar approximation, )P-H.F’W and h":- N, +dH . since hpv 1is
a pseuduscal&r. J')P corresponda to the same angular momentum
J' as y' s but has the opposite perity and orbital angular
momen tum g-‘- i’j—ﬁ +» The energy correction in the first order
in }sz does not arise because the diagonsl matrix elements of
the parity-changing operator are equal fto zero. In order to
derive an equetion for J’}I’ , the terms 1linear in ftfw and

o'W , should be seyarated from the expression (19):

(K= E) = hp i) (5.9 £ AT AN

e 2 =721 (20)
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Summation is ca;rieﬁ out over the orbitals of the core. The
expression in right-hand side of equation (20) is a correction
to the ezchﬁnge potential kaah (see equation (5)). No si-
milar correction to the direct potential oceurs. It turns out
also that the correction Jwﬁovn to the correlation potential
(7) is small (see below) and we neglect it in what follows.

The system of equations (20) for the corrections a%#
solved by iterations. To begih with, the corrections to the
core orbitals are calculated for the case when only the term

Rpu f’ is taken into account in the right-hand side of equa-
tion (20). Making sllowance for the correction to Vexck in
the right-hend side of equation (20) is equivalent to the sub-
atitution of the renormalized operator k. inatead of kfv .
The operator le.; includes, in addition to ﬁ,.,r » & chain of
RPA diagrams (see, e.g., Ref. /19/) in the residual Coulomb
interaction (core polarization by a weak interaction). The
matrix elements of the operator k?u satiafy the graphic equa-
tion depicted in Pigure 4, which is equivalent to equation {20).
If one makes only one or two iterations when solving equation
(20), this will mean that only the terms of the first or ge-
cond order in the Coulomb interaction are taken into congide-
ration in the chain of diagrams in Figure 4.

It is worth noting that we solve equation (20) for Brueck-
ner orbitals since A, contains the correlatien potential. In
terms of Hartree-FPock orbitals, this corresponds to making al-
lowance for the diagrems presented in Figure 5 and their ite-
rations. At the same time, we do not take into sccount cpﬁmtt
in equation (20), i.e. we neglect the dimgrams demonstrated in
Figure €., In Ref. /8/ when calculating the hyperfine structure
of Cs and Fr all the diagrams of the second order in the resi-
dual interaction were taken into account. It has been shown
that the diagrams of the type presented in Figure 5, gilve the
main contribution to the correletion correction, whereas the

contribution from the diagrams of the type presented in Pigure6,

congtitute about 1% of the megnitude of the hyperfine constant,

14

for the s and Py, levels. Domination of the diagrams of the
type shown in Figure 5 in hyperfine structure celculations has
previously been mentioned in Ref. /9/. Moreover, as the prece-
ding Section shows, to calculate the amplitudes of allowed
Bl-tranesitions with an accuracy of about 1%, it suffices to
use the Brueckner orbitals, i.e. to take into account only the
diegrams of the types demonstrated in Figure 5.

V. Calculation of the Eafitx—vialatigg

El-amplitude

In the preceding Section we have found the one-electron
Brueckner orbitals = +Jy with the weak interaction ta-
ken into account. Since these functions are the eigenfunctions
for a single-particle Hamiltonien (see equation (19)), they
constitute the complete orthonormalized basis. FPor this reason,
the parity-violating Ei-amplitude problem is not different, in
principle, from the allowed El-smplitude problem treated in
the foregoing Section. It is only necessary to replace ¢ by

-f*fé@* in all the diagrems. For instance, for the 6s» Ts
transition the contribution to the E1-amplitude without the Co=
re polarization by a photon field being taken into account, is
equal to

4 ﬂﬂiﬁ%si‘%\:ﬁ;ﬂsﬁf’t (21)

where .3 1s the dipole-transition operator determined by for-
mule (8), or (9). Formula (21) is equivalent to making allowan-
ce for four diagrams shown in Figure 7. Note that this formula
takes into consideration the correlation effects, involved in
the Brueckner orbitals (Pigure 5), and the core polarization by
a weak interaction (Figure 4). In addition to the corntribution
(21), we take into account, just as in the allowed E1-amplitu-
des, the first-order correction in the Coulomb interaction,
which arises due to the core polarization by an electric field
of the photon (Figure 3). There is no dirfi:ultr in doing it
using formulae (14) with the substitution )Ia-fm fq- J‘f: in
them.

15



Table 4 lists the results of the calculation of the pa-
rity-violating E1-amplitude in the 63 -» T8 transition in Cs.
To control the accuracy, the calculation has been made in the
1l and v forms, For comparison, we also give the results of the
calculation for Hartree-Fock orbitals. The column 'a' corres-
ponde to zero - order contribution in the residual Coulomp in-
teraction (the correlation corrections which are included in
the line renmormalization, of course, are taken into account in
Brueckner orbitals, see Figure 2). The column 'b' shows the
contribution caused by the core polarization by a weak interac-
tion, in the first order in the residual Coulomb interaction
(the first-order graphs in the chain of diagrams in Figure 4).
The column 'c' corresponds to the contribution, caused by the
core polarization, in the second and higher orders in the resi-
dual Coulomb interaction (the second- and higher- order graphs
in Figure 4). With our method of calculation using formula
(21) we immediately find the sum of the contributions: a+b+c.
To get the contribution 'a' when solving equation (20), we
should confine ourselves to the zeroth iteration and then sub-
stitute the found corrections be into equation (21). The sum
'a + b' corresponds to one iteration in equation (20) and, fi-
nally, 'a + b + ¢' is referred to the self-consistent soluti=-
on. The column 'd' in Table 4 gives the contribution to the
parity-violating E1-amplitude, which is due to the core pola-
rization by an electric fieid of the photon in the first order
in the residual Coulomb interaction. This contribution corresge
ponds to the substitution }1«'-: )T= }P-!- 3770 in the graphs depic=-
ted in Fig. 3.

As geen from Table 4, the contribution, which is associa-
ted with the core polarization by a week interaction ('b + '),
is 345 times larger as compared with that (d) associated with
the core polarization by a photon field. Just for this reason,
we have restricted ourselves to the leading order in the resgi-
dual Coulomb interaction in the latter case, while the closed-
-shell polarization by a weak interaction is teken into account
in all the orders.

Thus, we see (Table 4) that taking account of the correla-
tion corrections using the transition to Brueckner orbitals of
the core polarization effects enables the gauge invariance of

16
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the amplitude to be restored. The parity-violating E1-amplitu-
de of the 68 - T2 transition is equal to

(-ﬁ:] DEIE:‘..}: 0,356*1-‘5-“ ﬂ%’)(-:‘tﬂa) (22)

where € is the electron charge and A4y is the Bohr radius.
The results of the calculationa in the 1 and v forns are dif-
ferent by 0.2% (by 20% in the RHF method). Of course, such a
good coincidence in this case is occasional. So, for the

6s —» 88 transition the amplitudes are as follows:

8 |DL] €sy= 0.370- 107 (- Be) (ieay)

<és| | 5}:0.35;40‘“(-— %‘-’){-fea,) !y

i.e. the difference constitutes o0.8%.

In solving the inhomogeneius equation (20) for the correc-
tion to the wave function, we take into account the admixture
not only of the positive-frequency intermediate states but al-
g0 negative-frequency states ( E<-4m ). In the v-form calcula-
tion, the contribution of the negative~frequency states is not,
generally speaking, negligibly small. To estimate this contri-
bution, it is convenient to come to the nonrelativistic limit.
Then the Hamiltonian (16) takes the form

/t GQW (5'-‘“"(7(’?)*' J’({)é"ﬁ) (24)

fl.f

where 5' is the Pauli matrix and ,3 is the electron momentum.
The contribution of the positive=frequency intermediate sgtates
to the E1-amplitude in the v-form is equal to

-» ni
Et, Z{(?s ol a>(=!-—-f»4!é_2 (Hsl-S A (il | 65)} (55
Ejs E"
where A is the vector-potential eof the electromagnetic wave.
In addition to the contribution (25), the contact term appears
in the E1-amplitude while substituting /a-r,b e.A’ in equati-
on (24):

E{_=-G8ee 7|84 ()| 65) (26)
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It is well imown that E1- corresponds to the contribution of

the negative-frequencies intermediate states in terms of rela- of about 1% for the lower 6s,, and 6p,, states. The worse ac-
tivistic language (in the relativistic case, this equation curacj for the 7s, 8s and 79;; Htﬂtesliﬂ connected with that
::i:::ﬂ':::oﬁi'l:::ngﬂz:ﬂtzztoﬁn:mrtﬁ_?.;EfmE):_,LM 11“ ta- we have underesiimated the magnitude of the correlation cor-
the velucify of the external nlect:z; atnl dist i b+ £ i Zs(E:Eﬂ) e Zh(E-E‘Minataad ok
(%S Yatn sauat foe. a0 i R e Zs(E=Ez) and Zp, (E=Egp,) . For instance, the calculation of

» and ¥ near the nucleus. the hyperfine structure of the 7p,, level with Zp,, (Ez,.,)
Thus, we obtain that the E1_is suppressed by Z times as com- ! refines the accuraecy up to =3% (from -5%). The values of the
pared with the El It is worth emphasizing once more that our p-odd and usual E1 amplitudes remain, practically, the same,
::;::f?:ff::;ﬁzizz::ncgizizﬁz:izzlly takes into account the | gince the relative contribution of correlations to them is a

i 3 ' factor of 3, less than that to the hyperfine structure.

v :
I erfine structure of the levsls VI1I. Discussion of the accuracy of calculation of
the parity-violating El1-amplitude and comparison

The hyperfine interaction is localized in the viecinity of with experiment
the nucleus, just as a weak one. Therefore, as is known, the s
::zerrin:;structure calculation is suited for testing the mecu- In the present paper the following tests have been per-
¥y o e parity-violating effects calculation. Previously, formed in order to estimate the accuracy of calculation:

we have calculated the hyperfine gtructure of (g making allowan-
ce for the core polarization and all the second-order correla-
tion corrections (see Ref, /8/)« This calculation provides an

1. Bstimation of the sengitivity to the parameters of the
nucleon distribution in the nucleus. The accuracy is better

Accuracy of about 1¢2% for the hyperfine constants of the s than 0. 2%,
end Pi,levels and of about 3+4% for the P3, levels. In the pre- 2. Coincidence of the emplitudes calculated in the 1 and
sent paper we take into congideration only the correlation v forma. The difference constitutes about 0.2%. Remind that
corrections which are included in the renormalization of ging- for the El-amplitudes of the usual allowed transitions, the
le-particle orbitals. It is noted in Ref. /8/ that for the s discrepancy in the 1 and v forms is of the same order as the
and Py, levels (which are significant for a weak interaction) disagreement with the experimental data.
these graphs dominate and, hence, one should expect that the 3. Calculation of the atomic parameters kmown from the
:;iaziatian; "?ich 18 performed using Brueckmer orbitals b experi;ent‘ This test is of extreme imporiance since ocur cal-
of therzrizrazfz:::::g:a:::;:::0 ;;::::t;ipravidea e Y culations are based on the first-principles anslysis and con~
same way as for the weak intera;tian T:a ﬂ::c:ze m&d: i: i . tain no fitting parameters. The calculated values of the emer-
ding the hyperfine fiteractlon into ;he aeffacan::etu : ¢lu- giea are different from the experimental ones less tha? by 1%.
tions (core polarisation) is desaribad to REERY AQAr An accuracy of about 1% is also obtained when calculating the
necegsa $o ? : A Res. /8/s 1t 1a s allowed El-amplitudes between the lower stetes. The error in
the fﬂr::iae.E;herz:aizizrjj-z;:kgzzEEI:::::EZ¥:r:i::z: i: :15 ' calculation of the fine and hyperfine structure proves to be a
le 5. Por comparison, the results of the calculation on ti ik little larger. It is probebly for the reason that here the cor-
Hartree-Fock orbitals are also presented. Tt is seen that :ha relation correctiions,we calculate with some inaccuracy turn
calculation with the Brueckner orbitals Py o out to be large (about 30%). For the energies and Ei-amplitu-
y des, these corrections constitute about 10%. These are not lar-

ge for the parity-violating Et-amplitude, too: =3% in the 1
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form and 13% in the v form. In view of this, one can expect
that the accuracy for this amplitude is about 1%, Just as in
the ecalculation of the energies and usual E1-amplitudes.

Table 5 demonstrates that all the calculeted hyperfine
congtants have turned out to be less than the experimental
ones: for the és by 0.4%, Ts by 2.7%, épy,by 1.8%, and for the
TPy, i8 less by 5% at Zp(Eép)and by 3% at 2 (Eipa) . From
these data, one can form the impression that we un’2restimate
the wave funetion of electrons in the vieinity ~f the nucleus
and, hence, underestimate the megnitude of the weak electron-
-nucleus interaction. For control, we have made a calculation
which gives the hyperfine constants larger than the experimen-
tel ones: by 4% for the 68, by 0.2% for the T7s, and by 0.6%
for the épy, . Only for the Tpu. , the calculated value is
smaller than the experimental one: by 3% at Zpu. (Eéme) and
by 1% at 2 pua(E?pw) . This version is obtained if in go-
ing from the Hartree-Fock single-particle potential | =
= Vi~Vexek  to the Brueckner potentisl, V=V~ Vexck +Voore
(see formulse (4), (5) and (6)), the core orbitals are frozen,
i.e. V 1s calculated using the Hartree-Fock orbitals. The
difference of the first version from the second one consists
in that the former takes into account some additional graphs
of the third order in the residual Coulomb interaction. In the
second version, the usual El-amplitudes for the allowed tran-
sitions between the lower astates are different from those ob-
tained in the first version by less then 1%. The P-odd amplitu-
de also remeins nearly the same:

i) 2 -11 @ ;
(Ts1D| Esy=0.868- 107 (- ﬁ)(-{eqs) Bz

(7| D5’ s“s;:a.a?s-ia“‘(_%r)(q‘eas) (28)

One can substitute J}t. obtained by means of the ugual per-
turbation theory in 4,,, into the formula for the p~odd ampli-
tude (21). Then the largest contribution t¢ the P-odd amplitu-
de comes from the mixing of the 7s and épy, -states:

(Tileg by SElilire el e ‘2”
E?; £ Eﬁfw.
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The matrix element < Yis/[hpv/¥épn) is determined by the be-
haviour of the wave functions in the vicinity of the nucleus.
The hyperfine-structure constants are sensitive to the same re-
gion. For instance, A;""’ J‘Fs E"’”z in the nonrelativistic 1i-
mit. Therefore, it is reamsonable to compare, with experiment,
the quantity which is similar, in structure, to the p~odd Ei-

-amplitude:

quﬁ Aéfh <6f"‘"l ] Di, '?5} (30)

E?ﬁ"Ekﬂh

It

turna out that the calculation with the firast-version Brueckmer
potential underestimates this quantity by 5.4% in the 1 form
and by 3.1% in the v-form, while for the case of the second-
=vergion Brueckner potentiel this quantity ie underestimated
by 3.5% in the 1 form and by 0% in the v form. If we add the
contribution of the other lerge terms from the expansion of
Jvistu the r.h.s. of equations (29)and (30), the situation re-
mains the same. This fact it 1s possible to consider as the in-
dication to that we have underestimated the wvalue of the P-odd
El-amplitude. To guarantee the correctness of the result, we
have slightly increased the average point in the theoretical
value of the El-amplitude (see equations (22), (27) and (28)),
inereasing simultaneously the intervael of its possible varia-
tion:

e - 11y @ :
EL= (75| Da|6s)= (0.8820.03) 10 ('Er“”)("”’) (31)

The results of the calculations made by the other groups are
pregented in Table 6. In the experimental works (see Ref. /1/),

the following quantity has been measured:

ImEL {1.56%0.17% 0.2 mV/em
5 (32)

According to Refs. 121fand}%f, the vector polarizability JE is
Em.lﬂ.l to 27a3i045 ﬂ; « Then

Edeyp= 0.828 (1%0.11+0.08)-10"" (Liea,) (33)
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Using equation (31), we obtain that for 13305 the weak nuclear
charge is the following:

Qw=—-?3.ﬁ:’igiﬁﬁ?n}"{+?fz (34)
where ¢. and ¥, are the weak charges of the neutron and pro-

ton. In the Weinberg-Salam model,

?u=—ij ?p=i— ‘;'Ji'ﬂ."gw
Because of the electro-weak radiation corrections, these con-
stents depend on the momentum transfer. If the W-boson's mass

mw is chosen ag a normalization point, according to Ref. /22/,
then at low tranafers

?n="0‘3?‘?; ?.Fzﬁ.??é-—S_ﬁ'ﬂagAJHtﬁ?w (Hw) (35)

Prom the W-boson mass measurements 1t follows that Jﬁutgwfq%r =
= 0.22620.00820.014 (see Ref. /23/) and hence the week charge
of the 13305 nucleus is

Bu=-FlLO+[7F+30 (36)

The velue of @w from equation (34) is well consistent with
this number. In addition, formulae (34) and (35) can be used
for an independent determination of .4w*8, :

Ain6,, (Mv)=0.237+0.036 *0.03 (37)

The discovery of the perity-viclation effect in atoms (Ref.
/24/), which was confirmed in Refs. /25-28,1/, was a very im-
portant verification of the unified theory of electroweak in-
teractions, suggested by Welnberg and S5alam. An exaci meagure-
ment of the weak charge of the nuclewvs can prove to be a new
gtep in this field.

YIII1. Conclusion

In conclusion we would like to note that the high accura-
cy of atomic caleculations, achieved ir the present paper, is
due apparently, to the following circumstances. For homogeneous
matter, the RPA method (summation of the diagrams in Figure 4)
is the approximation of a high density. The Brueckner method

22

(summation of the diagrams similar to those demonstrated in
Figures 2 and 5) corresponds to the low-density approximation.
We take into account both classes of diagrams and it is proba-
bly for this reason we obtain & good accuracy in the intermedi-
ate region as well. The other point is the fact that we take
into account all the first-order diagrams and the main second-
end higher order diagrams in the residual Coulomb interactiion.
The correlation graphs we take into account (Figure 5) dominea-
tes because only these graphs contain a small energy denomina-
tor corresponding to the excitation of the external electron.
In all the remaining graphs of this order, in the intermediate
states, there is at least one electron excited from the core,
i.e., all the energy denominators are large.

We are thankful to M.Ya.Amusje, I.B.Khriplovich and
M.Yu.Kuchiev for helpful discussions.
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Table I. Energy levels of Cs (cm'1}
HF+correlations Brueckner Experimert
State HF in perturdb.theory ! orbitais F1}f
bs 27926 31440 31703 31407
Te 12104 12924 12851 12871
8s 6790 7116 7080 7090
6pﬁ_ 18792 20223 20349 20228
pri 9230 9663 9635 9641
6ps,, 18388 19667 19779 19674
TP;& 9079 9478 9455 9460
583, 14146 16381 16634 16907
58, 14168 16318 16514 16810
Teble 2. Radial integral 6s-6p,, in the unite of
Bohr redius
Zero Core
order polarization Sum | Experiment
z -614? 0-41 -Elﬂ?
HF |}
v =5,05 0,06 -4.99
Erﬂeﬁk- I 4 -5:90 Q.45 =545
ner -
ﬂ'rb- ﬁ ""'5-6? ng‘g -EPSB
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Table 3. Allowed El-amplitudes {(radial integrals) in Cs, in
the units of Bohr radius
Transition Experiment
¢ d /15,16/
6_5 — Sph "'5»45 -5-58 “54535(14)
63 - Tplfj. =0, 32 -'Gij'ﬁ -01343{3)
63 P E‘Plﬁ_ "'010?6 -D-114 -0.099{2)
63 s 693& ""5-43 "5-54 -SIE{B{T}
6s - TP‘#I -0,48 -0,52 -0-505(9)
65 - Bpy, -0.17 ~0.20 -0,188(5)
78 = 6py, 5.16 5.14
Te - TPy, -12,63 -12,51
?5 — BP”-L -1'1-14 -1;12
s - Tp -12.48 ~12,36 =12,30(3)
Table 4. Ei-amplitude of the 63 = 7s transition
L‘ e o 1
L Py e 4 ),
24y HsiDz| 657 (-3, )10
Core polarization E:
a b c d
¢ 10,740 | 0,132 0.048 ~0.039 0,880
HF
U 10.504 C.131 0. 065 0,038 0.739
¢ |0.734 | 0,128 0.045 | -0,051 0.856
Bru.
v |0,594 0,155 0,072 0,033 0.854
a - without taking into account tha core polarization ;
b - core polarization by & weak interaction, the first order;
¢ - higher orders;
d - core polarization by an electric field of the photon.
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Teble 5. Hyperfine-structure constants in 13355 (x 103 um'1)

A e e AR v i o S L
68 56.79 78.27 76.38 76.66

(L] 15,59 18,73 17,72 18,22(10)
8s 6.51 7.46 7.09 7.30(5)
6py, 6.67 9.54 9.56 9.737(4)
TPy, 2.37 3.15 2.99 3.147(1)

Table 6. The values of the 68 — 73 E1-amplitude obtained by
various authors

Ei <??’Dz{6?> (‘@%)-iﬂu

E1 Reference
.1 /3/
I.15 /4/
I.00 /5/
0.75 | 729/
| 1,06 _ ; /10/ 3
| 0.97%0.1 | /6/
agto. o2 ; our number 1

3
4.
5e
6.

Te

8.

9.

10.

11
12.

13.
14 .

15.
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