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1o ;ntréductinn

The subject of this lecture 1s related to a peculiar dy-
namical phenomencn in claseicel mechanics commonly termed among
physicists as the chaotic, or stochasiic, motion. Until recen-
tly the mathematicians used to say jusi about ergodic proper-~
ties of a dynamical system. However, nowadays the term "random
motion® becomes also populer. I would like to emphasize from
the beginning that the problem we are going %o discuse is pu-
rely dynamical, without sny random element either in the edqua-
tiong of motion or in initial conditions. Hence, the term -

- dynamicsl, or intrinsic chaog. Below we regtrict ourselves
to only Hemiltonian dynemics for which the invarianit measure
(phase space volume) ig known beforehand, unlike diseipative
gyatema.

The interest to the dynemical cheos is twofold. First, 1t
i1a a fundamentsal phenomencn in phyeics which, in particular,
zives, at last, a long-awaited model for the true random pro-
cess. Second, no matter how strange the rendom dynamics may
appear it turne out to be fairly widespread in many fields of
science and technology ss, in particular, the present Confe-
rence demeonstrates.

On a rare oceansion, when chacs comprises all the phase
space of a dynamical system or, at least, a whole invariant
gurface of the motion, e feiriy simple statistical descripti-
on is poesible as contrasted to most complicated dynamical
picture of motion. /

In many cases, however, the situation is not that gimple.
A typical example is the so-called divided phase space, divi-
ded into the regions of both chaotic and regular motions sepa-
rapted by highly intricste borders. It is the structure of that
chaos border which considerably complicates aslsc the statisti-
cal description of the motion. Even though the mathematical
theory of dynamical systems admits divided phase space and,
moreover, does term it by a special notion - ergodic compo-
nent - not much ig actually known thus far on the dynamical
behavior therein. Below we are going to consider a number of




selected guestions related to this topic. I choose an old Po-
incare problem, which is atill not solved completely, to di g
cuss some recent developments in thie field,

A general review of the modern mathematical theory can be

found in 1"3, while related physical theory is surveyed, €.8s,
4,5
in L™

2. Poincere's problem

¥e begin with a "simple® example conegidered by Poincare{’
in his sttempt %o understand profound difficulties erising in
the study of nonlineer dynamice, in general, and of the famous
three body problem, in particular. Much later, this example has
proven to typify a fairly general situation in Hamiltonian dy -

namicg {aee 4 and Section 3b below).

Congider the motion of the ordinery pendulum under a high
frequency parametric perturbation as described by the Hamilto-
nian

e Py wl Cosp. (1+ € Cos8) (2.1)
H(F ‘¢, ) e

Here @ ig the sngular position of psnd}:.lum (¢ = 0 corres-
ponds to the unstable equilibrium);f):.— @ is engular momentum,
and &, is the frequency of small oscillation. The perturbati-
on is characterized by ite strength € << 1, and by the phase
& (é‘ = (1), There are two small persmeters in the problem
under consideretion: i) the perturbation strength E£-:3 41Y the
- adiabaticity parameter

-)—i:- - —f—f’ 4:'."'-‘-'-1 (2e2)

Praditionally, the adisbatic perturbastion is assumed %o be
low-frequency. Yet, it is only a half of the story. Since per-
turbation of & system is & part of its interaction with ano-
ther syetem (degree of freedom) the back perturbation would
fna high-fregquency, and vice versa.

The motion of the unperturbed ( € = 0) pendulum, =8 is8
well known, is periodic for any initial conditionsz with one

important excepticu. corresponding to the value of H= “:’f .

The latter trajeciory ies called separatrix since ii separa-
tes the pendulum oscillation (H<@.) from its rotation
(H> mf’ Ye In what follows the separatrix is going to play a
leading part in dynamical chaos.

The motion period T is increasing idenfinitély when ap-
proaching separatrix. In immediate vicinity of the lattfer

o ir. ..'E;-z;-t s H
Tﬁzgnfﬁ?‘fJ 1(?'—*‘55‘""'.{ (2-3}

]
Note thet for oscillation (W< ) the quentity T is amctually
a half-period. The separatrix motion is, thus, .aperiodic, and
it hasg continuous Fourier spectrum which may be characterized
by the integral 4: .
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The last expression holds for APe 13 .rf-'“) ig the gamma fun-
ction with eny positive real m, and &

Wo¥) o
¢, (t)=4-arctan (&)~ 2 (2.5)
is the separatrix motion (in case of Mm<0 FLF 4,,;'9";’6"3"}*) do

What is the impact of perturbation on the pendulum moti-
on? The first move would be o consider the perturbation as
completely nonresonant because of the condition A>*{ . Then,
in the first epproximation of the asymptotic theory 1 the
perturbation can be neglected, or averaged out. Yet, in the
second spproximation it changes the effective potentials

£
Ulp) = 0F Cosp — g (Cosp- 55 Cos 8y ) (2.6)

This lesds, in particular, to a shift of frequencies at both

stable and unstable equilibris: : P’
L L :
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(2.7)
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We ghall use this result lafter on.

Wow, let us inspect the perturbation more carefully. Ia
it really completely nonresonant? And is the change (2.6} its
only effect? Certainly, it is not on the separatrix, as is ob-
vious from the boundless spectrum (2.4). Hence, in come vici-
nity around separatrix we alsc cannot neglect the perturbati-
on even in the first aspproximation.

That the motion here is very sensitive to perturbation,
which makes it highly intricate, has been found out and well
recognized already by Poincare. Be was very close to the disco-
very of chsotic dynamice although he did never use this sort
of language, instead speaking just about homoclinic solutions,
or trajectories One of the problems he has left to future re-
gsearchers was to find out the dimension, structure, and measu-
re of the homoclinic region near separatrix.

3. Solution of the Poincaré problem

a« Separatrix mapping

Pirst, we conptruct a mapping describing the motion near
geparatrix in finite time steps. It is natural to choose the
motion period T ss the time step. Then, the change in energy
4% over ithis step is given by the integral of the type (2¢4)
while the change in perturbation phase § is determined by the
dependence (2.3). Thus, we arrive at the mapping (), € -'5;9_141

E:g-ﬁ)\'g’bﬁ (3.1)

_..h_ 5 ; :
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which we shell call the separatrix mapping.

The new perturbation parameter g is given by the éxprea- |

glon

sgeilo e |
g‘==- rE (3.2)

‘While £ ie proportional to small perameter £ , it cannct be
expanded in- powers of adiabaticity parameter f/%.. Hernice, as
ig commonly believed, the expresgion (3.2) as well as the map
(3.1) go beyond the esymptotic perturbation theory. However,

&

s i

one can argus in a different way: it ig not so much a fault of
agymptotic theory but, rather, cur ownt failure to chooss the
proper, adequate perturbation parameter. In other wordse, fthe
true small parsmeter of the adiabatic perturbation is not the
usual cne 1/\ , which enters the original Hamiltonian, but ano-
ther one which expliciily %akes account of wesalt resonances pre-
gent in spite of adisbatic conditions. An importent point of
tnis philosophy relates to the fact that there ig no principel
difficulty in eveluating this £ . The evaluation actually fol-
lows the usual agymptotic procedure of successive gpproximati-
ong gince the unperturbed separatrix motion (2.5) is uped. The
really erucial difference from earlier unguccegsful approaches
to Poincere's and similar problems lies in seeking out the re-
sonances even if they do appesr io be abgent.

Parameter £ immediately gives the so-called splitting of
seperatrix, l.e. 2 gap betweer ithe two brenches of separatrix
going up snd down in time (ths firat corresponds to W = O, and
the mecond does so %o wr = 0, the maximal gap being 2/£]|). This
effact has been glgo discovered by Poincaré (Section 4Qi). In
our time it was further studied by Halnikcvs, Shilniknvg gnd
others.

Separatrix splitiing iz a very importent dynsmicel pheno-
menon. Yet, it does mot tell us anything about a long-term
evolution of the gysiem. Ave variastions of # restricted or un-
bounded?

Before to proceed further we trensform (3.1) iniroducing
a8 new variable g:=u9f§ s that is we take half of separatrix
splitiing as the unit for u? o Ignoring .a congtent phase shift
in the second eaustion (3.1) (see Section 3¢} we arrive at the
reduced map -

Y=y+ Sind; 6= 8-\ Lniji (3.3)

with the only parsmeter A . In Section 5 some resulis of nume-
rieal simulation for this latter mapping will be presented.
Bote the symmefry of this system: y—+ -1} j G G+ A .




bs The standard map

For treating the separatrix mepping (3.3) analytically we
introduce another approximate modal4 by linearizing the second
equation (3.3) in y around one of resonant values of y = ¥,
where Mlny, = 2xr, and r is any integer. We get the map

Te l+KSne; @O=0+1 (3.4)
which is called the stendard map since it ip the final redu-
cing step for a number of particular problems in nonlinear dyne-
mica4. The new momentum I=(¥r“>’)}~/9r_ , and the perturbation
parameter:

ok (3.5)

b
The gtendard mep provides a locel (in y)} description for the
previous model (3.3) under the condition: },';J,..- ::',._.,'I«y,,. j or
N\ 5> 47r. Note an additionel symmetry of this map: I-> T+ %mrr ,
which is not present in (3.3). It is just this symmetry that

congidersbly simplifies the motion gnalysis since 1t makes the -

motion structure periodic in momentum I. Hence, instead of a
phage oylinder for map (3.3) we have now a .E.E"x 2% torus.

We, further, replace a discrete 'ayatm (3.4) by the comp-
letely equivalent continuous one with Hamil‘hunianﬂ’

H(IJ 9} f) = -g—-:-k KZ (&’5 (ﬂ-.fﬁ‘rf‘j (3.6)

which hes an infinite series of (integer) resonances J=
I,.. = 975 . If we gingle out one of them, say, r = O, and
ignore (average:out) all the othera, we just come back to the
pendulum whose motion we intended to study in thie way. It is
easy to see that leaving two more terms in series (3.6) (r=£1)
we completely recover the original problem (2.1) with the pa-
rameters: _

mj: ]{'3 il = 20 A=%; E=X (3.7)
Yet, it is not a viclious circle but a spirel of cugnitinﬁl
In & more formal language it is called remormalization.

W

Now, let us memtion, first of .all, that the dynemics of a
single nonlinear regonance cen be described as a pendulum mo-
tion, or in the "pendulum approximation®. As is shown in 4,
this spproximation is applicable under fairly broad conditions.
Moreover, the original problem (2.1) relates to the dynamica of
saveral (three) resonsnces and, hence, does include alpo fhe
reaqnanﬁe interection. Here, precisely, lies the importance of
the Poincare exemple and of the Poincare problem.

Renormalized system (3.6) is not completely equivalent fo
the original one (2.1) in that the former has infinitely many
regonances instead of three only for the latter. At the first
glance, the problem becomes, thus, much more complicated, yet
this ia not the case. Just due to periodicity in I, the stan-

dard map, unlike the perturbed pendulum, has a sharp critical

value of ite parameter |K'|= ¥.. which separates the bounded

' and unbounded variation of I. What is this oritical value?

Firet, we may just refer to the numerical aimulation& which -
gives Kcr'= 0.989 =~ 1 to the sccurscy within a few percent.
Uging completely different approsch, based on a combination of
snalytical as well as numerical procedures, Gresne1° hag found
Koy ™ G.9T1ﬁ35a T™hig latter result has been confirmed also in‘m
The accuracy of this value is open %o criticism 12, yet, in

any event, it is fairly close ¢ the sbove numerical resulft.

The critical K value can bs =igo eﬂ-bimate'&, in order of
magnitude, from a simple reeonadce overlap criteriunq‘

@w)e $ /% L 282e _, 4 (2.8)
e 2% 2o

where (L, is the freguency of small phase oscillation on a re-
sonance, G‘iw),,. is the resonance width, and S'mr is the spa-
cing of resonsnces under conalderation. Even though Eq. (3.8)
givee the correct order it considerably overestimates

Kge =~ 2.5 because only integer resonances (= 1_=27r) are
$aken into sccount. Meanwhile, in higher spproximations of per-
turbation theory the full set of resonances {ﬁ,¢=&-§) does
appear which obviously lowers K.p+ A partial conglderation of
those higher order resonances results in a better aatimateq's

Kur % lels




Below the threghold, that is for |i| < 4 (we neglect the.
sbove discrepancies in Kcr)F the I variation is sirictly boun-
ded by the resonsnce width: fdlf:ﬁ-éngﬁa Above the threshold
the motlon is generally (depending on initiel conditions) unli-

mited in I, and ahanticﬁu

The random nature of such a motion will be discussed in

Section 4. Now let us, first, turm back to peparatrix mapping

(3.3)« From BEq. (3.5) we immediately see that the motion near
geparatrix is chaotic within the layer [yl < X 4 ors

23] & 9; = AlE] = 4'.'?;-5}.3@"“?')‘/2 (3.9)

This relation réaalves4 the Poincare problem ag to the dimensi-
on of a homoelinic region. Thus, the whole homeelinic estructure

generated by the two branches of split separatrix is chaotic and

occupies a layer whose width is ebout A\ times the separatrix
splitting. That layer is commonly termed as the stochastic lay-

el

The accuracy of estimate (3.9) is not as high as that of
K.pe It relatea to the fact that a resonent value ¥y, enters
Eqse (3+5). Due to the gymmetry of standard map in respect to
the line I= 7, the maximal relative uncertainty in the posi-
tion of layer border is equel approximately to I/ A {comp,4}.
Actual accuracy is somewhat higher as we shall see below.

c. Numeric gvidence

The first numerical verification of estimate {3.9) was
undertaksn* using the stendard map as a model. Indeed, we have
geen sbove that the latter is essentially equivalent to the
original system (2.1) with parameters (3.7). As to the other
resonances in (3+6), their contribution is exponentially small
according to (3.9). There is an additional complication with
the gtanderd map related to the fact that parameter E=21n
no longer small. On the other hand, numerical simulation is

much simpler, of course, for & map than for a continuous gys-

' tem like (2.1)e The first numerical experiments showed, howe=

ver, that Eq. (3.2) is not exact for the map, end an additio-
nal fector has to be iniroduced: ;

e R R e .

£~ £ ‘Qk 3 E;, z £.15 (3.10)
Even though thie factor can be calculated analytically as an
effect of higher approximations of perturbation thenrj4, its
actual evaluation seems to be formideble and constitutes an un=-
solved problem. Thisg shows alpo that the above assumed conditi-
on £<<4 4is, generelly, essential for the validity of Egs.
(3.2) and (3.9). Teking into account the factor (3.10), we ar-

rive at the expresaiun
~ N

3 4p _E = - o
o bt ’% ;(s/.z _ ]

t0 be compared with numerical data. In a completely different

epproach this estimete has been confirmed in 13 except for the
correction (3.10). The first cumparisnﬁ-4 revealed a satisfac-
tory agreement within a fairly wide paramefer range comprising
about 13 orders of magnitude for wy (possk<4).

New and more accurate data, obtained by Vechealavov, are
presented in Fig. 1 as the dependence of 15 on motion time
{the number of map iterations) for both the outer (curve 1) and
the immer (curve 2) parts of stochastic lgyer (K = 0.5). Note
unusually big fluctuations which we are going to discuss below
(see, especially, Section 5¢). The values of 1%, were caelcula-
ted from the mean motion period 7, for e single trejectory in
the layer, using the relation

13'i=3.2*E.XF(f'-/F7:.) (3.12)

It is obtained via simple averaging of Eq. (2.3) in % assu-
ming uniform distribution of a trajectory over the layer (see
below)s Eg. (3.11) gives in this case 4% = .0329. Thus, the
accuracy of simple estimate (3.11) 1s about 20 percent for this
not a very big A= 8.,89. To improve the agreement, a cﬂrrectiﬁn
due to frequency shift (2.7) can be introduced as follows. In
the present case of a map with infinitely many resonances (3.6)

_thia correction can be shown to yield:

JK — '/k—‘-:({".e_#?' - - (3.13)

The correction at unstable equilibrium is responsible for =

i1l




change in period T, in Eq. (3. 12). As a result, the value of

wWe » for a given measured period 'I'm, would increase by & fac-
tor of EXP(:T Ky"ﬂﬂ)xi 18. This leads to ¥ = .0320 and

wh = «0303 which are fairly close to the predicted value (3.11).
Note that correction (3.13) does change, of course, the snaly-
tical expression (3.9) as well, yet it is already included in
empirical factor (3.10).

A nice agreement achieved in this way is, however, acci-
dental since another correction, due to inhomogeneocus distribu-
tion inside the layer, needs to be introduced. An example of
the equilibrium distribution of a single trajectory is given in
Fig. 2 as *r}l:rtainm.’.14 by numericsl simulation of separatrix map
(3.3) for A = 9. The equilibrium density was defined as the
trajectory mean sajouﬁl time for & given interval of w¥ (or y¥i.
Hote that the invariant measure for separatrix map
dfusxoc dwr oc dy 4is proportional also to the measure of

original system (2.1) near separatrix: 4‘«?4-::(: JH/&)('H)::C dwr T(w),

and T is time unit for the map.

Apart from big fluctuations the average denagity near lay-
er edge is about half of that at the center. Aversging Eq. (2.3)
with this density results in an additional correction factor in
{3.12) of about 1.16, and makes the corrected values of W

still bigger: W, = «0371; wj = «0352. The average of these two

values now exceeds the theuratical prediction by about 10 per-
cente.

This latter discrepancy relates to the marginal resonance
inside the layer which "repells" the layer edge outwards (for
detail see 4,' Section 6.2), snd which, by the way, depends on
the neglected phase shift in (3.3). The center of this reso-
nance is at .= SQ-EKPGETF/A)Z_.OEFJ (r = 10). Since its
half-width is approximately £ /A it "expands® the layer up
to 'LJ;=.03?? decreasing the remaining discrepancy down to 4
percent which is fairly low: Moreover, this uncertainty is al-
ready of the order of difference between the two layer parts
which makes another problem to be understood. Apparently, the
difference is also determined by the correction to Eq. (2.3)
which can be shown to have the form:

o, Tw)= L (1'*%1') +O(A=J‘*j 4= fh (3.14)

12

Thus, the period T is longer for oscillation (W< 0). Yet, the
derivative

m,% “:.;-——i—--(f-l- é—f*-’:) (3<15)

is bigger for rotation. Hence (gee Egq. (3.5)), the outer part
of the layer is wider, the total difference being™

s . iw e

Wy 4
Pormally, this is cloge to numerical result: AWg /u?’, 2 0.056.
However, the pame correction (3.14) leads (after averaging over
the layer, w— Ws/4 ) tc reduction of the numerical value by
half. Unfortunately, big fluctuations, clearly seen in PFig. 1,
preclude from eny definite conclusion ag to this latter discre-
pancys

4, Intrinsic Randomness of Dynamical Motion

Let ue briefly discuss the nature of motion in stochastic
layer. It is certainly very complicsated, irregular, and, at
least, does surprisingly resemble & "itrue™ random process. A
fundemental question is whether one can, in principle, discern
the former from the latter. Aacnrding to the algorithmic theo-
ry of dynamical syatems, the angwer to thlis question is negati-
ve 3. That is, g0 to pay, dynamiocel {deterministic) motion may
happen to be, and asctuslly does a2 quite often, as random, in
a senge, as 8 "true® random process.

The crucial festure of random dynamice is the exponential
local ingtability of motion described by the metric entropy

{see, e.g. 1y :
h=3A A - /’\+>O (441)

where f\. is the maximal of Lyanunov exponents /\ (see, e.g.
oo 5} The motion is exponentially unstable if El.'.lﬂ. only if
N,.>0. Hence, it suffices to find out /\ only, which is given

by the relation
A = &M 1_‘2‘1 F(t}

t— oo

(4.2)

13




Here % is any separation of tw?#plose trajectories in linear
approximagtion, that is vector gl(ﬁ) satigfies the equations

of motion linearized about & given trajectory of the system.
Considerable simplification in calculating just J&hq relates

to the fact that the initiel vector @ (0)can be chosen arbit-

rarily, so that one does not need to know any eilgenvectors of :
the linearized equations. For thie and other ressons the gquan- k
tity A, serves as a convenient practical criterion to discern
between chaotic and regular motions in numericel simulation
(see, e.g. 16}- Hote that due to dependence of the motion fre-
quencies on initial conditione, a linear local ingtability ta-
kes place, as a rule, even for the regular motion Ll {giac 3.

It aleo implies that only the conclusion f‘sm}O is unquestio~
nable.

In the slgorithmic theory & the random meesne unpredictab-
le, or, to be more precise, the uncomputable. That definition
appears to be in accord with our intuitive ideas of what the
random is like. For to predict with a limited precislon each
next (in time) state of an exponentially unstable dynamical
system, one needs to know the next digits of the irrational
numbers representing the initial conditions of motion. Thet is,
B0 to say, for prediction of a trajectory one needs to mow
this trajectory beforehand as encoded in the initial conditions.
The crucisl polnt is that for /\“::-O the trajectory does vi-
tally depend on arbitrarily diminutive details of initial con-
ditions. In other words, such a trajectory as if eXposes more
and more deep strata of the motion phase space. For such a
random trajectory could run for ever the phase space has to
admit arbitrarily small difference in initial conditions which
means the continuity of this space. It is, precisely, the ulti-

mate origin of random motion of an unstable dynamical system
in classical mechanics.

Apparently, the above picture does not hold in quantum
mechanice which leads to a different kind of "chaos", if any,
even in a classically random quantum system 12. Since clagsi-
cal mechanice is only an spproximation to the real world, and,
moreover, not the best one, the classical random dynamics is
but a limiting case which is never reached. The importance of "

14

this limiting case is in that it gives a pattern of the ran-
daﬁ to be compared to more realistic physical modele.

Beside the quantum mechanics the computer gimulation of
classical dynamics is of especial value in the context of this
lecture. Since any quentity in digital computer is eesential-
ly integer, the simulating dynamical space is never continuous
but rather "quantized" in a sense, snd the true randomness 1s
impossible. This makes a serious problem etill to be solved.
Preliminary considerations '2 lead to the conclusion that
computer simulation of classical chaotic dynamics is, never-
theless, possible within a finite (and relatively short) time
interval, and with the help of some special computational
tricks. Let us just mention that essentially the same situa-
tion takes place in quantum dynamics as well 12.

In any event, the algorithmic rendomness does not imply
that the chaotic motion is completely random. Generally, it
may include a regular part as well. A good example is just
the motion in a stochastic layer. The phase trajectories here
are regular to the accuracy of layer width which ls exponen-
tiglly small. On the other hand, the transitions from oscille-
tion to rotation and backwards are random as are succesasive
values of the motion period.

5 On gtructure of the chsos hordexr

The random nature of motion generally does not determine
1ts statistical properties, nor even implies the relaxation
to some definite equilibrium. The latter complication, rela-
ted to a possible instabllity of a quasi-equilibrium, will
not be discussed here (gee, e.g. 18'19}. In "gimple"™ dynamical
problems under consideration, like pendulum {2.1), there al-
ways existe the single and stable equilibrium, not necessari-
ly a simple one though (see Fig. 2). Then, positive entropy
(h>» A, >0 ) implies mixing, thet is & correlation decay,
and, hence, a relaxation to that equilibrium. However, the
relaxation is not necessarily exponential as is still assumed

-

sometimesn.
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a. Jorrelations

The statistical properties of chaotic motion essentially
depend on the correlation, as is well known. Congider, first,
the standard map (3.4). The "force" correlation, we shall need
later on, is defined by

CF(?:') =<S£ﬂ EE+rz) . Sin 5'(:‘-"}) (5.1)
where averaging is performed either along a trajectory (in nmo-
tion time %) or over an ergodic component of the motion.

For sufficiently large K, when reguler component of the
motion is negligible, this correlation is known to decay falr-
ly fast 20, so that the sum

oo £
S.=2 Ctoln - %gﬂ). « Jz(f” (5.2)

does certainly converge. The last expression, where jé(fk’/)
13 the Bessel function, was calculsted in 21; it tekee into
account the first four terms of the aseries only.

The law of a long time correlation decay ( 2°—~ o2 ) is
actually unknown thus far. Some numerical evidence suggeste
that it may be like ((7)— 4.exp(- BvVZ') (comp. 22:23y,
Particularly, the numerical data 20, related to the standard
map with K = 7.5 and rescaled in the log-log plot, do fairly
good fit thie dependence with A = 1.14 and B = 1.37. On the
other hend, in case of & regular component of motion present
(for K = 2.1, for instance) & power-type decay of correlstion
is observed (see below). The latter may be compared to & sgimi-
lar behavior of the hard sphere gas 24,

b. Diffusion near the border

If correlation decay is sufficiently fast a simple statis-
tical description of the chaotic motion is possible by means
of a diffusion equation. In case of standard map it reads

“ali_’(xjf) %
g 1D a’éﬁ;’f) (5.3)

16 -

where the diffusion rate

e TR I <
D(K)= b <Gt B[1e4S ()] o

- -t
For large K the correlation correction ,S; o /k‘{ £ (5.2)
vanighes, and the diffusion rate approaches ite limiting, un-
correlated value DO = 1{2!4. In the oppomite case |K[—+ 1 the
correlation dominates, and diffusion rate rapidly decreases

D(K) =z a- (%]- f)i (5.5)

where (L 1/5, and ol 22 2.55 according to numerical simulation.
This implies ,S;__—'b ~ 1/4 as [Ki—> 1.

For peparatrix mapping (3.3) the diffusion becomes inhomo-
geneous since the dependense D(|K|) turme into D(|y!) accor-
ding to Eqe (3:5). Generally, the diffusion equation includes

an additionsl (drift) term. Indeed, the Pokker-Plank-Kolmogo-
rov (FPE) equation can be alwaye written in the form (see,

CeZe 23y, ﬁg _
%?t_ o %ﬁ’.i Q:-ZD(&JM + UW)E (5.6)

Here (J(y,?) is the flux, and U/ (¥) is the drift velocity re-
lated to equilibrium distribution £ ('y) by the expression

| Uly) = 5(13:5* .‘“:5* —2}{?)-:—,!; In f.(y) (5.7)

Inspection of Pig. 2 shows that there are two regions within a
stochastic layer where the drif+% can be neglected:

i) near the layer center where ,& (y} = const exactly (ve-
riations of .IEL seen in Pig. 2 are due to fluctustions), and

where Dly)=¢ D = 1/4; |
ii) near the layer border where ,f,(y)g const approxima-
tely only (see below), and where (see Eqe. (5.3) and (3.5)):

Dyl = a- (1—-%"—)“’ (5.8)

Generally, the dependence u (}'J is rat_he:r complicated. Since
the border line is of a complicated shape, the y variable abo-
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ve (as well as & ) is assumed to have been transformed in such'

8 way as to "straighten out" this line (’}ygj = )\).

In a model like (2.1) the diffusion spreads across the

~ layer, and is obviously restricted by a finite layer widih.
Neglecting mo f&r the slow diffusion (5.8) at the layer edges,
it takes z,‘ ~ )\ iterations for a trajectory to get across
the layer, or for a distributinﬁ function to relax. Since, ho-
wever, Eq. (5.4) still holds a long time correlation does ari-
se due to the boundery conditions. How simple the nature of
that correlation may appear, it led toa paradox (or, rather,
mipunderstanding) 26-28 that the mixing precludes the diffusi-
on instead of implying it. 4 formal reason for such a surpri-
ge ‘conclusion is in thet the mixing does provide existence of
the limit in (5.4), while the paradox is & result of too lite-
ral understanding of thie limit. It reminds us about an addi-
tional (besides the mixing) condition for the diffusion des-
cription of relaxation in e chaotic system to be applicable.

Namely, there must exiat two different time scales of the mo-

tion
Tn < T, (5.9)

that of correlation decay {Z-‘c_.) on which the limit (5.4) is
asymptotical, and the other one of relu&tiun'{zf,,) on which
the same limit is local. For example, the motion in a stochas-
tic layer has zf'cm 1, and z‘,. a NF y 80 that the condition
(5.9) requires A1,

The long time correlation within stochastic layer is of a
primary importance in meny-dimensionsl systeme where the dif-
fusion slong the layer {(the so-called Arnold diffusion 4)
does generally occur. For the letter diffusion were long-ran-
ge, it has to be independent from the diffusion across the
layer (due to different perturbation terms involved, for exam-
ple) to get rid of that correlation.

Now, what would be impact of the slow diffusion (5.8) on
the motion in stochastic layer? It turns out to be crucial
if the exponent ol > 2. Aesume the following diffusion equa-
tion near the layer border

18
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oF _ % < )
i%_ﬂx'\% (5.10)

where we have introduced a new varisble X= {- ‘,,f/}\. (’y;:-o),
and rescaled ¥ appropriately. Firet, let us try tc find the
eigenfunctions, that is to solve equation:

3-:;{ d A‘p# o Seiqu = (5.11)

It admits a solution via the cylindrical functions .Zr(z) (af;&.ﬁj:

.mef oo A
f* e
]f ()= X Z )J i (5.12)

If o< { the solution ie regular at x = 0, and the relaxation
ig exponential. However, for o > 1 the solution is general-
ly gingular. In particular, if of > 2 the function

e 3
Gr (257 %)
7 BRI

grows and oscillates indefinitely s X+ O (7 ~ 1). If one
would impoge an artificial boundary condition at X=X,#£ 7,
the eigenvalue R‘-?. ~r X_, —+ O &8s X,—~ © . Hence, for the
natural boundary at x = 0 no (regular) eigenfunctione do
exist, and one would expect a nonexponential relaxation.

£ &

' The general solution of this diffusion problem is not
known. However, we may analyze & particular pelf-similar solu-
tion to Eq. (5.10) which, a8 is easily verified, reads: :

(IDE-——(P—(—S—) CS'EKF((&L)S ) (5.13)
.ff/(-:a)

Here C is an arbitrary constant, and $= X « At

= 0 _the flux i~
- Ry [
Q(;gf:):—xx?}@ =" 45%,= I -ex;?(@f--i)- s 7 (5-14)
e

is always zero, while density (}6’(5) may be non-zero (for C < 0). _
Due to self-gsimilar nature of this solution the second bounda-
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ry copdition cannot be impoaed at any fixed x (e.g., at the
laysr center, x = 1}. However, asymptotically as Z— oo it
dosgu't metter since the diffusion mainly proceeds in sn ever
narrowing reglon at the layer edge. The mize X.I- of this re-
rion ( S~ 1) scales with t as X, o< 7 SR wpile for

¢ —+ oo the flux {5._14}.‘becames independent om X o

If initial density at the layer edge is less than tha%t
at equilibrium ths relaxzaiion corresponds to a negative (i.e.
toward the edge) flux (C > 0), and to the boundary conditi-

ong: 5
fre
L)

4t)=0;: Pleo,t)=pCx fo=1; f= (5.15)
pg¢) @ B Z J2 Cac-«t)ﬁ

wherse equilibrium distribution fﬂ is assumed to be constant,
and r@)is the gamma function. Asymptotically as Zf—raﬂ,
and except the diffusion region ~ X_b s the relaxation pro-
ceeds as follows

ot 2)- gl = §1914¢ = S o
) _

In the opposite case a similar poslitive flux gets in (C < 0),
and Eq. (5.16) remains unchenged. Thus, the slow diffusion
(ol > 2) near the chacs border results in a power-type rela-
xation.

Since the time correlation of a pair of functions de-
pends on the relaxetion for one of them, we would expect, ge-
nerally, the seme power law (5.16) for the correlation as
well. The latter may be faster though, if the relaxing functi-
on ia cloge to equilibrium one near the border already from
the beginning.

There is an interesting experiment on the behavior of .
electrons in a magnetic trap 29 which appears to confirm a
power-type relaxation. The authors 23 observed a nonexponenti-
al dependence on time for the electron current .'f(f)—"-—- en
out of the trap, due to a chaotic motion of electrons in inho-
mogeneoues magnetic fleld, and did fit i% by a double exponen-
tial functiom. On the other hand, the chaotic region of that

.20

electron motion is known to always have the border

4

rescales the data 23 in the log-log ploi, as shown in Fig. 3,
they perfectly fit, for sufficiently large time, the power
dependence A oC %~ with exponent gm 2.2. Thip is to be
compared to the flux (5.14): @eCZ¥ =2 , whemce olz 2.83.
Remarkably, this value is not fer awsey from that for the stan-
dard map { ol 2.55, Bee (5.5))}. I{ indicates some universal
behavior near the chaos border. For further astudies of this
behavior the Poincare recurrenciesz proved to be very useful 14@

+ IT one:

F
c. Poincare recurrencies

Consider separstrix map (3.3), and follow a =mingle tre-
jectory while it crosses succeasively the symmetry line y = C.
The motion time interval between two succegsive crogsings we :
shell call the recurrence time 2~ . As motion proceeds the
dietribution of 2- values tends to & limiting function F(T)
defined as the probability for s recurrence to occur later
than 72~ . Obviously, F(1) = 1 (for the map}, and generally
F(Z )=+0 ag ©-—>»oe . in exception from the latter is, for
example, the asymptotic motion (2.5) along the unperturbed
pendulum separatrix. Note that in case of the motion with
discrete apectrum (quasiperiodic or aimost periodic motionsa)
F(Z°) = 0 at any 2~ greater than some €, while in chaotic
motion F(2") £ O for all 2. Poincare recurrencies do not im-
ply, thus, quasi_pariﬂdiaity a8 is stated sometimes.

In stochastic layer motion the asymptotic behavior of
F(T) as 7--—»oc relates to the structure of the layer border.

Such an approach waes actuelly used in 30 where the power de-
pendence
4
Elr) >~ == & B4 (5417)
T .
hae béen found with p = 1/2. Ae was pointed out in " it cor-

regponds to the free homogeneous diffusion until the layer

border is reached, that is for = & XE' « Indeed, the function
F(T ) can be found from the solution g(y,¢) of the diffusion
equation with boundary conditions: 5(:9_, z)= 3@," Z)=¢ , and
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with initial condition: 3{‘;!, 0) = JS.(":])/J}; + As 1 eagy to
see, the solution cen be teken as derivative of the Gaussian

function 3(3:-&};._“% G(wj}é_), where G=2-E¥Péyz/f)/1K#f S

cince oo o0
F(~) = _-.;_J'i___" Sﬂ(‘j,f)d'j:‘-' Tﬁ éq'éjs?)dt (5.18)
o

where q’.':(:f/‘f_]hg/}j ig the flux, and normalizing factor
,/.FEE ig introduced to provide F(1) = 1, we ge;ﬂ F(‘E") =
=Cﬁ/ﬂ)@(@?)= =" TlF’(,"‘3.9.1'1.4:1 recover the result (51T )

At larger T >> }\.2' the dependence F(Z ) approximately
remaina of a power type but the exponent p changes; according
to numerical data % tne average p for various A is {pr a2 3/ 2
In Pige. 4 an example of distribution F(Z) is given in the
log-log scale M. A typical feature of thie dependence is an
apparently irregular variation of the logarithmic derivative
d log F/d gz = P + The last part of the curve in Fig. 4 is
unreliable due to a poor statistics (see numbers in the right
lower corner of the figure). The variation doea not depend on
trajectory and, thus, characterizes the structure of the cha-
os border rather than fluctuations in motion.

Actually, it is not known if the observed dependence
F(2') does really relate to the layer border only. It may de-
pend also cn internal chaos borders encircling many islets of
stability in the peripheral part of the layer (see Fig. 2).
Agsuming, nevertheless, that it is not the case we may try to
interpret Poincaré recurrences, using, as sbove, the diffusi-
on equation (5.10). Self-pimilar solution (5.13) cannot satis-
£y simultaneously both boundary conditions (P (0,# ) =
rp(mJt) = 0) we need to apply Eq. (5.18). However, one can
argue that the i}recise behavior of the solution at x = 0 is
unimportant for the flux at X-»re2. Then, we choose p(ee, )=

= 0 (C<0)and mate use of the second expression (5.18) ¢

get: | |
Féz) oc?___: (5.19)

Z

For the aversge ,o‘bimad value Lol <pr= 1e45 the diffusion
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parameier X = 2.69 ip comperable with previous values 2.55
and 2.83. Moreover, the change of the term .)r:‘?n.fy-,-' in map
(3.3) for ?\L/HI did not alter p much 1" : p. = 1.T1 and
el. = 2.58. Gimilar resulis have.been also obtained by Shepe~
lyansky with standard mep for K = 2.1 and 5 when some iglets
of stability are present (in the latter case the relative
stable area amounts to sbout 1.5 percent only 4 s At K = 2.1
P = 1e90; ol = 2.53, and for K = 5 p = 2.21; & = 2,45. In
spite of some dispereion in ol values, which is partly due %o
empirical uncertainties (as p variation, see Pig. 4), they
are surprisingly close in different models that again suggests
some. universal behavior at the chaos border (mee below, Secti-
on 5d).

On the other hand, for K = 7, when the regular component
is negligible, if any, the recurrencies, as expected, are per-
fectly exponential over 6 orders of magnituds:

-1

S e———

F)=e °r (5.20)

with T, = 1.73. Note that comparison of this value with the
theoretical prediction based upon diffusion equation (5.3) is
now precluded due to violation of condition (5.9): ?"-'e"-"a‘,'..”.f.

For ell spparent success of the sbove interpretation of
Poincare recurrences one serious difficulty should be mentio-
ned: the relatiom (5.19) contradicts with a eimple and almost
obvious estimate 1“ based upom ergodicity of motion. Ramely,
the measure of the region where trajectory spends its recur-
rence time Z° would be of the order 2-/(T) ~ X (see Sec-
tion 5b, and we assumed the total number of recurrences A ¥ Py
the total motion time 14 }o The question is what's that regi-

on? According to the above picture of motion j;ar the border

it seems to pe the diffusion region X:Dﬂc ¢ «-% , whence
F(z) wi/zﬁﬁ-!-**‘_ in contradiction with (5.19). Even if the
latter expression were exact solution to diffusion equation
(5410) it would be very difficult to match this solution to
numerical data. An alternative approach will be discussed at
the end of the next Section. S
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i3 wag meniioned above there are numerical indications
suggeeting some universal behavior near the chaog border in
the phase gpace. low we are going to consider a theoretical
mnodel for thie alleged universality. That the resonance gtruc-

ture determining transition to chaos is hierarchic has been ~

kn&ﬁn already since gquite long ago {gee, csgs 31,4 b Yet, on-
ly in the pioneering work due to Greene that struciure

nas been exploited to evaluate a critical perturbation for : 2
the standard map which, at least, is very close %o the true
one (see 12 .ng Section 3b above for discussion). Hierarchic
end scaling behavior at the transition to chaos was further
atudied extensively in many papers (see, €.2 11,13 and refe-
rences therein). A distinctive feature of our problem (see
almo 22 ) is in that the perturbation strength here is not a
parameter, as for standard map, but rather a function of dyna-
mical variables (mainly, momentum y for separatrix map (3.3))
This leeds just to a chaos border in the phase space rather
than to a eritical periurbation strength.

Assume the following scaling hypotheeis: near the chaos
vorder any two of dynamical varisbles (v, &) are interrela-
ted by a power dependences

e
1 (5.21)
wnere Puv* is socaling parameier, and ﬁw' ,Du_u_ = 1. Choosging
one variable (i) as the fundamental scaling unit we have

v oC u,ﬁ" . (5.22)

Such a scsling hypotheslie is essentislly identiggl to
that in the fluctuation theory of phase transitions which IS
leads to some aimilaritﬁ of thess two problems., However, im- :
portant distinetiions ghould not be missed. The scaling in pha-
se transitions is continuous and essentially statistical (fluc-
tuation scaling), while in our problem scaling is discrete
(gee below), and does relate to both chaotic as well as purely
regular components of motion on both sides of the chesoe border.

P

|
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What makes the two problems similar is a crucial impact of an
infinite sequence of scales (continuous or discrete) upon the
behavior at transition.

Transform (X , @ ) variables irn such a way as to provide
near the border: X of |ed(x)- edg] = R (%) being the mo-
tion frequency of system (3.3) under consideration, and E«Jg =
= &) (0) the frequency at the border X = 0. Hence: Pr = Po s
or, chooping ( @ = &g )} as the fundamental scaling unit
(Fm = 4 3}, {ﬁx = 1. Note that in original variasbles (before
the transfcrmation) the exponent Px would depend on & (see 11}-:

The measure of cheotic component ﬂa{,‘x , since at the
border the resonances are just about to overlap in all scales
(comp. Fige 2), whence IG,« = Yy

To proceed furher we need o relate thege scales to that
of time. It can be done via the overlep parameter = (3.8). The
width (,ﬂm_) of a high order resonance m'i— = F/g, deganda on
its phase oscillation frequency 11.$ as (see, e.g. Ay )i
4 (_aqu‘ A _Q.q’ , while the resonance gpacing é"w%fv f;_f"g « The
latter follows from the total number of resonances, within =
given interval of & , which is proportional to q_24 In & more
formal way it is slso implied from the best approximation of =
given irrationsl number {G}E_in our casge) by the convergents
of the continued fraction representation (gee, e.g. 3,3 )3

— (5.23)

Hence, at the chaos border

_ (w) % R (5.24)
B el e e
The overlap parameter 5, i1s related to the Greene residue 10 :
R-.,PN 54‘ . Por standard map with [K| = k:,_._rwhich corresponds

to the chaos border in map (3.3), & — 1/4 &s g, — 00 7 4n
accordance with estimate (5.24).

Suppose that a glven scale is easentially determined by
saome resonance ﬁdg’ « Then, the associated time scale would be

',-":} A _Q;f' and {Am)c} oC !&Jar-—- g]‘. Whence, PT =
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Py = - 1/9 . The scaling for diffusion rate near the border
: 2 2 4.5

ig, hence D oC (dﬂﬁ% /T..;,. ol X /7""-‘"3 X", and the dif-
fuzion parameter of = 5/2 which is close to various numerical

- values glven ahove (2.45 £ ol < 2.83). With ol = 5/2 both

the relaxation as well as correlation go asymptotically as
t"E‘. Thie law, being nonexponential, does, at least, imply a
final diffusion rate according to (5.2) and (5.4). It results,
however, in blg fluctuatione near the chaos border (see, e«
Fige 1)« Barlier, such fluctuations have been observed, and

" qualitatively explained 4 s in the Arnold diffusion.

Since resonance width C.dﬁ.'-‘)g, oC If;f/‘e' » where l'fé is cor-
regponding Pourier amplitude of the limiting. perturbation in
Hamiltonian (see below), the scaling (5.24) implies Ifé oC 5‘,-?,
that is the perturbation has two continuous derivatives only.
This ie precisely the critical smoothnese of perturbation for
the map “+** . It means the following. If initial perturbati-
on Vafé") is gnalytic function, its Fourier amplitudes, as is
well known, fall off exponentially; like V; oC exp (- 6"%) 5
for example. However, as we proceed to higher approximations
the amplitudes grow, or parameier & decrenaea-% ; 6°— e(K).
At critical perturbation the dependence V‘i on 4, becomes; asg
everything else, of a power-type, that is 5"’(&_'_):: 0 (see 39 e

~ On the other hend, as is alsoc known 34 s the initial perturba-

tion needs not be gnalytic for a chaos border to exiet, inste-
ad it sufficies for V(8 to be only smooth, that is Vq”nc c;,"ﬂ'
provided ‘,Dﬂ - Pc_\_ » Otherwise, the motion is chaotic for any
nonp-zereo perturbation strength.

As was mentioned above the scaling near the chaosa border
is diescrete. It means that there exists a denumerable sequen-
ce of principal scales which is determined by a corresponding
gequence of resonances &J¢}~= r',t_/q,m converging to the border:
Yo /q,h—v- @, as G _-» 00 . The resonance sequence depends on
arithmetical Qropertiez of irrstional @W; , for example, on its
representation as a continued frmtic}n:-{mg‘&:[é’“ ﬁ_“ iy é’,._,..J
where 85;;.1 ere integers, and curly brackets denote the frac-
tional part. According to Greene's conjecture 10 &Jz ie the
"golden mean®, i.e. {Wg¥ =g, =[1,1, .., 1, J=(F~1)/2 =, 618
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. 1% 18 not known whether thisz ig true for the standard map but

generally it does not hold 12,35 « A much weslker hypothesis
that <3, has & “golden tail", inEe{ﬁ_g}:[g;,;“; é,, ey R
seems plausgible.

In case of the chacs border the main problem is to match
the arithmetic of &.‘}g to the critical value of K which depends
on Xs On the golden tsil the estimate ({5.23) becomes exact
with (- 'fAf?:ﬁ 0:45, the biggeet ons for irrationals of the
type gma—im'} s 3 M, __F « Following Greene 10 we agsume the
principal scales to relate to the "“golden" convergents 3*3“#;
Then, the scaling factor S‘q,ﬁ C;H*d/sg,"-r »f+§f e Since the
gign of successlive differences {a.}g-- Fa/ G, ) alternates the
actual pcaling factor on the chaotic side from the border is
6‘4’2’ (= 6“':'). Hence, one would expect & variation of the
border structure, the period, in logiscale, being :i#. =
= 2 nfag 6“;‘!_ 22 Q42+ This qualitatively explains the obaerved
variations of exponent p for Poincare recurrences {gsee Fig. 4).
However, the above value of Zﬁ geems too small as compared
to numerical data 14 {4’.’&# 1#1.5). The latter show alsoc & ra-
ther irregular variation.

On the other hand, for almost any irrationsl an the
average <4{ﬁ_> = 35/6'- n b €ntl1.03 with big fluctuationa
towards larger fo (see, e.gZ. 233 }o Thig peems_to be more
in conformity with numerical data. Yet, it does not necesse-
rily refute the golden tail hypothesis. Instead, it ie quite
poesible that, generally, the tail begine too far to be meen
in numerical simulation unlese the system perameters ( A\ in
our case) are specially adjusted.

The principal resonances, which determine the above sca-
ling factor, sccount also for the shape of the border line.
A crude estimate for this shape can be evaluated as follows.
On each scale the resonance strip (around a "gueue" of its
fizxed points) approximately follows a nearby regonsnce sepa-
ratrix of a larger scale. A relative slope of geparatrix to
i1te resonance strip scales a=s ﬁ'q._mc C.d&i)% /.g"f oC ;2,'{
(see Eq. {5.24). Hence, the sum [T 2, g“’% estimates the
"absolute” (in originel variables) slope of the border line.
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Yince the proporiionality factors for esch &;_ are varyling

withk # ., and, particulerly, chenge sign, this sum diverges at

the very special & only, which, however, may form a dense
get. Hear a gingular voint (say, & = 0) the border shape is
roughly determined by the sum

(o)~ 2 & Cos (35) ~ b

Since the scaling exponeants depend on & » this singularity is,
generally, of & power-type ae has been found in 37,01 | Yet,
for mome points one might expect the logarithmic singularity
as well.

Finally, let us estimate the contribution o Poincare re-
currences from intermal chaos bordere of resonance stochastic
leyers. That there are many such layers within the main layer
is immediately seen in Fig. 2 from a low equilibrium density
near the border. It also follows from the limiting vaiue of

" Giresne resgidue R = 1/4 which mesns that the resonance centers

near the border are not destroyed.

Let the time scale of m given resonance be 7%~u Then the
meny S0 ourn t*mﬁ in ite region of meaaure;q%u{ ¥ is, due to
ergodicity, #, zﬁ* oC X, where A is the number of entries .
into thia raginn, end % is ths tatsl motion time. Assume the
universal digtribution of Foincaré recurrences £ (2) oc 27/
with some, Lnxnﬂwn g0 far. ps ;articu+arlji tnis implies the
probability Ffy oC (/7)) =< (g /o )C (T2 4) for
any internel chacs border of a rescnance slochastic layer.
Then, the coniribution %o Poincaré recurrences in the main
layer from a psriicular resomancs would be

= o -3
- . F
Fr.»’,s_,} o .J'erf Fq_ qu CL : g_ .uc%—{5025}
N P N 7

whepe A/oC T ig the total number of recurrences. Now we need
$to gum up the cemtwibutions of all undestroyed resonances
which retain their stochastic layers. The number of those re-
sonaness cen be sstimated as follows. Define the border zone
¥z (%) a8 ﬁfx;)@ ~ 4 where 8°(X) is the exponential
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e

factor of the perturbation Fourier amplitudes introduced abo-
ve. Assuming the linear dependence f?fﬂJﬂfix near the border
we arrive at the scaling X, o< Cj, for the border zone size.
The latter implies that for a given q just one resonance gets
into this zone, so we are to merely sum up contribution (5.25)
over q:

% £

Fla 2 F¥oc —

%Y (p-2) ="
Prom universality Frfﬁjﬁ*F%%ﬂ$ gnd p = 2. Firat of all, this
would imply that the main contribution to Poincarée recurrencee
were not due to the diffusion nesar the main layer border but
from & labyrinth of infinite hierarchies of internal chacs
borders where trajectory spends the most of ite recurrence ti-
me. This resolves the difficulty with ergodiclty discussed
above. However, if confirmed, 1t would algo mean that near the
chaos border the sbove scaling hypothesis holde only approxi-
mately, to logarithmic ancuracy; This also would change the
behavior of both relaxation as well as correlation near the

chaos border as compared to estimates in Section 5b based
upon the diffusion equation (5.10).

In e

;P:v-f’-stac 7 P=%

Certainly, the problem of chacs border siructure, whose
particular case is a still unsolved part of the Poincare homo-
clinic problem, needs and deservee further studles.
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The helf-width of stochastic layer of an integer re-
gonance in stendard map ve. motion time (number of
iterations): outer part of the layer {1); inner part
(2); K = 0.5.
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Equilibrium distribution of a single trajectory in
etochapgtic layer after separatrix mep 14 : t = 10
(broken line); t = 4 x 10 < (circles); A = 9. Dashed
line indicates the mean density near layer edge.
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Pig. 4. Integral distridution F () of Poincaré recurrences i s e St s
for a single trajectory of separatrix map (10 € itera-
tions): curve presents numerical dats 14 ; straight
lines are: F[({2) ac 20 with p as indiceted; ab-
solute numbers of recurrences for Earge T are given !
in the right lower corner; log = decimal logarithm.
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