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Abstract

An integral representation for the Green's function of a
charged particle moving in a Coulomb field is obtained, with
the help of the 0(2.1) algebra, in the form convenient for
applications.



The influence of a Coulomb field on the QED processes is
convenient to take into account in the Purry representation.
In this case, it is naceaaér:r to have an explicit expression
for the Green's function G-Q*JR’J for a charged particle in this
field. The function Q{XJ}(’) is time~dependent in the combina-
iiong-t’ 3

G ('ﬂ, }Q’J oY Rféé_" é'-f:E(f'tJ G (E}Y:{E) (1)

It follows from the general theory (see, e.g. Ref. /1/) that
the function G({ﬁ']&) has, in the complex plane £ , the cuts
along the real axis from- oo to w1 and from M to 00 , which
correspond to the continuous spectrum, and slgo has the simple
poles in the interval (0, m) for the attrection field and in
the interval (-m,0) for the repulsion field . According to the
Peinmen rules, the contour of integration over & in (1) goes
from=- oo to e below the real asxis in the left half-plene
end over it in the right one.

In the paper /2/ the Green's function in a Coulomb field
was derived by ueing the explicit form of expansion Gﬁ:?jgj
with respect to the eigenfunctions of the corresponding wave
equation. In that paper the integral representation for the
function (5(Z,2'|g) contains the contour integrel, that compli-
cates its use in applications.

In the present paper & representation for fo,fjaj ig ob~-
tained by means of the cperator method. This representation is
valid in the whole complex plane £ , and does not contain the
contour integrals. It is worth noting that the operator method
used does not require the Imowledge of the solutions to the
wave equation.

Let us now consider the function G(¥,Z'[g) for real & in
the interval (~im ,m ). We shall represent it in the form

Gt ele)- - fa-3y (2)

where P = X%+ %)-—9['5: P=-i%& ;250 for the attraction field,
o = 1/137 is the constent of a fine structure; the standard
vepresentation for ¢ - matrices is used /1/. We shall rewrite

f The system of uitsHh =C = 1 is used.
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the nperatur(’ﬁ-—m)‘i in the form (ﬁ.-m)[z.(@l_m"j]“ft; then
e€q. (2) may be of the following form: |

@ .
G 3ie)=-¢ (5*“‘)5 - Hsse«- Lei+uomt g K Ege-y S :‘)f 3)
Z‘J’

. = - ' -
where P, = -% ®™Y K= j_z-r.Ha’“'Jﬁ-(ﬁji, Z is the orbital angu-

o

lar momentum operator; the representation S(£%= ok & Cz-éz“.l&i.f-ﬁj,

- i

N= ag“h:}ﬁqie used. It is easy to find the eigenfunctions of
operaetor K and construct from them the corresponding projec-
tion operator (see Ref. /3/), which setisfies the relations

KR @)= Mp+1)p (3,31, 2R, :'Fsp:_ﬂ-;jg,.:'%;jm;n} & A
&yt Q(ﬁj‘\"’)

where = t“@,&)ﬂ_&djz' »ji8 the value of the total angular mo-
]
mentum; summation over )° means that avar& and over two signs

in the definition of )\ . Write down an explicit form of the
projection operator:

= omy P“- P'l |

P = F’;z = _}%ﬂ; -.QJE“{I:]‘%L“ (;'J (5)

= - Tl =]
P P = % “th,m (") 'Q':'c"" (w')

wh:re‘ 'Ed"-“* (n) are the gimul tanem:s eigenfunctions ofj!. - Lt
an = - [ ﬁ ] e

‘h. (see Ref. /1/), ¢ frx ,Cs -E rxzjiG}é}Jﬁ:!i' % 4
one pubstitutes the expression for (;.".’-Rl) from eq. (4) into
eqs (3), then the problem is reduced to the calculetion of the

. . 2 :
mt;.on ;}f the operator effpf—.?t.s (T;-i-ﬁ TE} on 3{2,*1") » Here
£2: m’ g2 and the operators

Te= G L0+ 2500 oy s )

are introduced. The commutation relations for them and for the
operator T, = P

are equivalent to that of the 0(2.1) algebra generators. It is
Just the availebility of relations (7) that allows one to 801~

ve the problem stated in closed form o Let us first calculate
& result of the action of operator exp(-iu Ty Jon the function
-j'-(‘z,) which admite the Laplace transformation:

» Loc . 3. oo e T )
$ey= g:ﬁ‘ (e 2% F@= {22 e (83
§ 1is found from the condition'ﬁtc = 0., Using eq. (6), we

choose

5 = { A at A>0 oS

M=-4 at » €0 i
According to (8), we have to effect the function EF with the
operator Qyp(-iuT, Joyp(pTy) i to accomplish this, let us repre-
gent this operator as follows:

. = ~{c
Tain g agfhin £00 00 | (10)

=~ tuT,
t'e

- where QO , € and ¢ are the functions of  and 6 . Let us

differentiate both sides of eg. (10) with respect to U « With
the use of relations (7) one can displace all exponents to
the right and to cancel them in both gides of the equality.
Finally, equalling the coefficients at operators T,, T, and
T?' » we obtain a system of differential equations for g, 6
end ¢ , the solution to which looks as follows:
oy lou

a_.,_i_-.g_-&u 3 g:i-&(i‘-r)i C= 1_1'1%“ (11)
if the obvious boundary conditiones are taken into account.
Since

¢ vy = et 9ee®) .

where 59(‘1..) is an arbitrary function, and using eqs. (10),
(11) and (12), one obtains

The papers /4/ and /5/ give some examples of applying the
0(2+1) algebra in a Coulomb field and show how the use of this
algebra makes it possible to find the energy spectrum in a
Coulomb field. In the paper /6/ this algebra was used to find
the Green's function in operator form. '
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& > e
Haduy O @ J 0 ) (13)

P o o oo

Relation (13) enebles one to write the result of the action of
the qperator Qqcp{«-iu‘!}_)on %(z) 4 represented in the form (8);
After that, the integral over g is taken, end finally, we
have

ol : v
- T, %{xrt.) -i¥D

where J,p,4 18 the Bessel function. Acting in the same way as
in derivation of (10) and (11), we write the operator of inte-

rest Qxp[-26s5(Ty+ ?TJ)] in the form

' - s 15)
o (G cpings giREve.gn T (

where Qg = ftq(fks), 64> 28 (ma(hs)), 4= &ta.(ﬁsj » Using
(14) with £ (2)=86) ,u= cyq and (12), we find from egs (3)

—in8 . .
4 Y- ¥ 4 = l-! +i
ety ichn37 | gy g S

For the purpose of further trensformations of (16) it's conve-
nient to represent ?F as follows:

. i Iy = - -
¥P = [R- & (2+30)]Th (17)
where f: (’ f f'? L B are Pauli matrices. Using the recurrence
relations for the Bessel functions and the summation formula

_ {18)
- & = 3 e 3
ZP s @) 2y L@y H[i0% 28L] R, @

where P (x) are the Legendre polynomials, we obtain fﬂréﬁ{flﬁj
3 ob g

evovs s L SRl 5 | A (19)
G (T21E) = Frozae g«:ii SMPi iiiutis E{z:ﬂc&faﬂs—-?iﬂ}']”@)

T(S)= [4+ w3l Enﬁ'l][_%_ﬂ:g‘a) (¥ +m)-i 2 ) (D5 Rkyks “j% -

[ 3]

-l

+[4-RR- TR (3% am) €3, (A + o 2B R ) ) B+

[N 2308 Lhoks(5559A]) 3,0

2Silks
' ¢ ) (20)
v= “ E:"-_(Hji‘ s A= ‘%" [R._(J‘}t a_t(iﬂ ; &:i[ﬂ{_s‘j-— %_I{J'»]l
= e & ('Y 2T 5 %ﬁ q“"‘*ﬁi
'SM@S}

Recall that so far we have regarded § as a real quantity in
the interval (-w, W }, The analysis shows that formula (19)

- gives, for3x3 (0, & direct analytic continuation to the upper

(lower for 2 ¢/ p ) half-plane of the variable § . Denote this
function by EHEL'(¢)and the enalytic continuation of
G(E3'|¢) to the lower (upper for 2<o ) half-plamne g by
6&}03.? IEJ « For the latter we have

Do Qo
-{‘l oy - i: [_. ; - o
& (EY¢e)= — gﬂ gdsmp L[‘Z‘HES* ﬁ&mcﬂa&s ]}T(.s)(&’ﬂ
where ‘F(&) is obtained from T(g) , by alfernating i - sign of

dﬂﬂs}. This corresponds fto the integration over § in ! rmula
(3) from 0 to= 00 . The functions & (H¥(L) (19) and 67 Ig)
(21) coincide, as it should be, on the segment of the real axis
(~w, W )s In this range of values of § the quantity ﬁ ie
real. In integrating over & , the Bessel function passes from
sheet to sheet at pcuj;nta $= ™/p at integer y, = 1,2... , ac-
quiring the phase g"z"w » We decompose the integral over §
into the sum of integrals over segments of length Wf . Using
the phase relations for the Bessel function and the periodicity
nf_qfa(&g) , we obtain a representation for 6{&1?'{@ in the do=-
main =i gLm &

(22)

%
gt e, S Mt |
G.Czﬁ:hli,'}- ity | SIWET[%..Q)] -‘;ggf%?;‘ ‘_Eltt l'l'ﬁﬁ' &fg?}r( %)




The denominator in (22) tends toc oo at points 3:_&:_ y G
for asny integer » . However, the integral over ¢ also vani-
gshes for negative ,, at these points so that the expression
(22) has the poles only for n = 0,1,2, «+« « Since v ie po-
sitive, thie condition may be satisfied only at 2£>0 . Hence,
the simple poles corresponding to the discrete spectrum, are at

the points
. 3 [}[ [i ( h-t-'d' ]

On the segments of the real axis (-0, ) and ( W , 02 ) the
functions G ana ) are different, being the values of the
same function at different sides of the cut.

Quite similer are the calculations for the case of a par-
ticle with spin O, the wave function of which satisfies the
Klein-Gordon equation. We shall give the finsl result:

v

G[ £) .--ftﬂ i _r—"gi}hi)eg:qjsTS%pitL[mmh{hﬂ%- (23)
'H;AJI jzﬂ (1)

where ‘,.H “(f“‘?a-} -—&plj"‘- , the remaining notation and the sign z
have the pame pense as in the preceding part of the paper. The
analytic properties of the function &, are analogous to tho-
ge of the function { . The nonrelativistic limit is derived
from ege (23) by substitutions: _m-=> £+ 1a. 4 ,QJ,/.?;E.' where E
is the nonrelativistic energy (E=g-w ), §5 . In addition,
according to the normalization of the nonrelativistic Green's
function, eq. (23) should be multiplied by 2my « As soon as
the substitutiones are made, it is poseible to carry out the
summation over §, by using the formula /7/

20
. ' 2
gﬂ("i] (2¢+1) &{UIEP)UEHL(&}= & Do (K taz i) Ll
As & result, the expreseion for the nonrelativistic Green's
function takes the form

({llﬂlﬁj 1:. g‘t .F(Ba) E EZHE,&*RCHIJC‘&:{& (xﬁi::unj

25)

here )@= )-2mE » The function 6,_“_ has the cut along the positi-
ve part of the real axis of the complex plane £ . For z>0
(attraction field) it has simple poles at points [ Y & 2 L
At 240 there are no poles. To verify this, one can zﬁte
the contour of integration along the imaginary axis. It follows
from formula (1) and the properties of the function (25) that
6_%#,1') is different from O only at £5¢/ .

The suthora are indebted to VeN.Baier and V.S.Fadin for
fruitful discussions.
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