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Abastraet

_ - The Gelfand-Diki] spectral problem is considered in the
AKNS-technique framework. The general form of nonlinesr evolu-
“ion equations connected with matrix Gelfend-Diklj spectral
?roblem ig found. The infinitedimensional abelian group of ge-
- neral Backlund transformations is constructed. The infinite
‘amily of Hamiltonien structures connected with the nonlinear
zquations under consideration is found.




Le INTRODUCTION

The spectral problem
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and nonlinear differentlial equaiions connected with it are the
objects of intensive study starting from the Gelfand-Diki] pa-
pers [11,2], Phen the algebraic and Hamiltoniean struciures of
nonlinear equations connected with (1+1), some specigl Backlund
spanaformations, the factorization of the operator in the lefi-
“hand side of (1.1) end some other important properties have
been investigated in Refs. [3=10].

In the present paper we conslder the spectral problem (1.1}

where Wiz, t), Vi(Z,t)y .-+ Vwafx &) ere matrices of arbitra=-
ry order M such that /% ﬁ,f,l,;:;,*?ﬁ\ (&= 04..,7)md N is
erbitrary one in the framework of ARKNS~-technigue. This teckni-
que has been formulated in Refs. [11,12] for the second order
linear spectral prablem%: ,/\,4;# +H’x#)V9 Then AENS-technique
has been generalized to the case of linear spectral problem of
the arbitrary matrix order [13-20]- The AKNS- teclmique in the-
form which we will use in the present paper (gemeralized AXNS=-
technique) has been developed by ome of the suthors (B.G.K.)
[16-19] s The advantage of AKNS- tecimique consistse in the fol-
lowings: it allows i
1) to find the general form of nonlinear equations connected
with given spectral problem in gimple and convenient form,
2} to calculate the infinitedimensional group of general Back-
lund trensformations for these equatione and 3) $o0 investigate
the Hemiltonien structure simultaneously of the whole class of
the equations integrable by given spectral problem.

The main result of the present paper ig a construction of
the infinitedimensional sbelian group of transformations
(BC-group) connected with the spectral problem (1.1} This
zroup acts on the menifold of the scattering matrices { S(A, )}
for the problem (1.1) in fthe following simple linear manner:
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B(A, t)ena C (A, t) are arbitrary disgonal matrices with
elements B4(A £) which are arbitrary functionms entire on A .
The action: [/—> I/ of this BC-group on the manifold of potenti-
ale { V(x,t)] where [//x t) is & colum with N-1 matrix
components ¥, (x,t), Vi(x, ), ..., I, (gtis given by the formu-
la

N—1 :
# / e :
2 Be(ANIGY =AM ) =0 - (:2)
£=0
"5 F
where .5; (//I?; ft) are arbitrary functions entire on ./1 and
Ar ,_7;,’:‘ ; ﬂi are certain matrix integro-differential

- operators which depends only on V end V s The explicit{ form
of these operators is presgented in section 4.

The infini tedimensional abelian group of transformations
(1.2) plays a fundamental role in the analysis of nonlinear
gystems connected with spectral problem (1.1) and their group-
-theoretical properties. As we shall see, the nonlinear evolu-
tion equations integrable by (1.1) are the infinitesimal form
of transformations (1.2) generated by time displacement. The
general form of the integrable equations is

%iﬂxi) _if_(?*(éf é)Z;V: O (1.3)
fom 1

where .Qk(f..t £) are arbitrary functions mermar?hic on L?t .
md [t &A=, Zp E A=V -Me(V=V)

The infinitedimensiongl group of irasnsformations (1.2) is
the group of general Backlund tranaformations for the equatione
(1+3)e At g;ﬂ =0 (£=0,2, ..., ¥-1) the tremsformations (1+2)
are auto Backlund trensformations for the equations (1.3):. they
convert the solutions of definite equation of the form (1.3)
into the solutions of the seme equation. If%f" = 0 then
the transformations (1.2) are generalized Backlund transforma-
tions for the class of equations (1+3): such transformations
convert the solutions of given equation (1.3) into the soluti-
ong of other equations of the form (1.3).

BC~group of trensformations (1.2) contains also the infi-
nitedimensional abelian symmetry group of the equations (1.3)
ag 8 subgroup. In the infinitegimal form these gsymmetry trans-
formations are ( V=V '=V+J3V)

. =i
1 Fy \p .
oVxt) = 0 A(ULIZV (154

K=

where £z (L7) are erbitrary entire functions. Symmetry
iraneformations (1.4) are connected with the infinite set of

integz_-a.].a of moticn of the equations (1.3). Symmetry group
{1s4) as well the group of auto Backlund-transformations is a
universal one, i.e. any equation of the form (1.3) (with any

functions _Q£ ([.’: t) ) ie inveriasnt under trensformations
(1e4).

Ve conglider also the Hemiltonian etructure of the equati-
one (1.3), Hemiltonimn character of the equations comnected
with problem (1.1) was proved in the first papers [2]. Here we
show with the use of AKNS- technique thet the infinite family
of Hamiltonien structures is connected with the equatione (1e3)
nemely the following infinite family of Poigson brackets

l{ ’ ‘}n (ﬂ=0,-ff,l’2,...) s
{2 7}, ..-_-ﬁz.rrr(%(/_yﬂj% g

where ..7 is cerftain matrix differential operator. (Gelfand-
~Dikij operator)s Bracket { s fo is & well~known Gelfand-Dikij
bracket [2] . Brecket {, /, corresponds to second Hamiltonian

- structure which was congidered in Refs. [4,21,22,3,9_];;

The paper i1s orgenized as follows. In the second section
we conslider the direct scattering problem for (1.1) which ig
reﬁritten in Frobenius form and obtain some importent relations.
In section 3 the recursion operators which play 2 mein role in
all our. Gonstructions are celculated. The infinitedimensional
group of trensformations (1.2) is constructed in seetion 4. The
generel form of the integrable equations is found in section 5.
In pection 6 the genersl group-theoretical properties (namely,
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group of Backlund trangformations and sgymmetry group) of the
equations (1.3) is discussed,Hamiltonien structure of the equa-
tiona (1.3) ie conpidered in section 7. In section 8 the expli-
cit forms of recursion operators,integrable equations and Back-
lund transformations are presented in the cases N = 2,3,4+ In
the conclusion we briefly congider some other approaches to
Gelfend-Dikij problem (1.1).

Il. Some preliminary relations

First of all let us rewrite spectral problem (1.1) in the
matrix form (in the well-known Frobenius form (see e.ge. [23] N

2% A Y + Py (2.1)

ox
where
A S ol e s, 0 0 0 0
o 4..0 Q0 a0 D
¥ Jir -
yf "A= ,P" (2.2)
- v s o s o i WS o, SIEURE, B
‘VJ P Sl e T 0/ "E'H,---,*Vp-za

end 4 is identicel matrix M x M. The element %ﬂ‘; of column
Y end matrix elementsof A and P are matrices M x X,

The Frobenius form (2.1) of Gelfand-Dikij spectral problem
(1+1) is more convenient for our purpose.

We will agsume thai: V::/I, Z/ =0 at [ —> oo 80
fest that all integrals which will appear in our calculations
exist.

Now we proceed to construction of transformations (1.2).
Let us introduce, according to standart procedure (see e.g-
[24;] ), the fundamental matrices-solutions F‘FK?; If,/i) and

F (%, t,A) of the problem (2.1) given by their asymptotic
behaviour : :

om

e | R . A S ] S

Fiae) —= E&Y)  Fnt)—=Ex) @

where £ (%,4) 1ie fundemental matric-solution of matrix equa-
tion a-ag—-.—: AL - This system of equations have,as it is
well lmown (see e.ge [23]),the infinite set of fundamental
solutions. We will consider the solution of this gystem, l.e.
the asymptotic E of problem (2.1) of the form

E(z))=Dme’” (2.4)

where & is diagonal matrixs Ak = /\Quicsx&.ﬂ - :
Dit =2 (0gFDL (k= 1,000 ama g =exp(ZED,

Here and below c;:}; is Kronecer symbol ( J:¢ ={:’;;§ $u

set us note that /\g("_‘) (t=Z,... ,/) are eigenvéluea of matrix

Ay by definition A>0 anda A =224 2™ .

In stendart manner we introduce the scattering matrix

S(AE)
e fN A A) - T (e ) 8 (A E) (2:5)
or S (A,f)- = (/L_-('-TZ tz/l,))q F"(‘x; zZ, )‘) + Praneition

from one choice of the asymptotic of the problem (1.1) to the
other ( £, —>L,=F£ K  where A is some nondegenerate

matrix) leades only to a trivial redefinition of the scattering
ek | &, S = KA KT Y, ;
; i
Let us take now two ?bitrm potentials P/;r‘, t) and /D(&};)
(P(-sz)‘,mﬂ s Pl E) == O : and two

corresponding solutions }’ff-’-f: Z,A) and y'(’:z; t_,/{/ of the
problem (2.1). With th_g use of the equation (2.1) and the equa-
tion for Y™ (—f_—g =Y ArP) ) one can to show
that

Yt )= V(a2 A) =-Vice.t.3) [ Ul -Pl D W) o6

" One of the eimplest asymptotic of (2.1) 1s Eg = exp 4 X It
connected to asymptotic B gy formula B = ED~1.
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Putting ¥ =F 7 in (2.6) and going to the limit 2 > —oo
we obtain

SO, 8)-S0,8)=-S0,8) [dx¥ et WA )Py Vs 5Y) 2

Formula (2.7) which relates a change of potential Pf"r; t) to a

change of the scattering matrix S(A, t} plays a fundamental
role in our further constructions.

The mapping ;D('.I, ﬁ) e S(A, Z'.') given by the spectral
problem (2.1) establish a correspondence between the transfor-
mations A2 — £’ on the menifold of potentials { P=.t) ,
Az, i)fm j and the transformations S—.S on the manifold

of the scattering matrices {S(A, f)} +» This follows from the
commutative diagramm

P 2.1) S

5! 13

/D / (2.1) S"

We will con_aider only such trensformations B that
SOt)—>SAt) =B IALDSHLYCAL) (2.8

where 501;{'-) end C.-.(Af tj‘ ere arbitrary block-diagonal
matrices (i.e. 3&‘ =g:: an i i, caé = C; (,A; t)fgﬁf-f -
i,k = 1,00.N)e We confine ourselves by the transformations

of the form (2.8) by two reasons: 1) the linearity of the trans-

formation law (snd, therefore, ite readily integrability) of
the scattering matrix is a main idea of the inverse scattering
transform method (see e.ge [24] ) and 2) the generslized AKNS~
-tecinique allows us to conetruct in an explicit form the
trensformations of the potential 2 =P  which correspond

%o the transformations of the scattering matrix of the
form {Eta)w

Let us rewritte the transformation law (2.8) in the form

S-S =@3F-8)S -8§(1-C). Prom the comparison of it
with (2.7) we find

S1-BS), =-[de@IPPEY), @9

where for arbitrery matrix @ we denote by ‘}'Dp the off-dia-
gonal part of matrix @ 2 (@}')a; = ﬂr,s o @mf dl oA 3

(o Bm q,..., AMYe Here and below latin indices take values
1a2y809,8 (0r N=1) snd numerate block matrix elemenis of the
matrix KM x M. Greek indices take values 1,2,+:+; NM and nume-
rate usuasl mairix elemente of the matrices of the order NM.

Purther, it is not difficult to justified that the follo-
wing identity holds

ST re(1-8()t)S(AL), =

= CE A (4 - B w2 |

*:' (2.10)
= [ax {0 ) (Pt 1-812) -
- (1 -8B YPELYF BN

where 3(’/\‘: t) = DBEAL)D™™ . Bqualizing the left-hand and
right-hand sides of the equalities (2.9) and (2.10) we obtain



jd:r { 0_- (B Pl t) =P, B t))@-—‘*(x; g@’jp =0 (2.11)

tting «11) by nomponantﬂ and introducing the qusn-'
tity (

") 5 2 (7-",)3;36-_ (&, A, ¥,3d=1,...,/M)(tensor

product) we have
fd.il" (B(Ayﬁjp(x 39 P(I @B@Mr}@(ﬁ'@é&_ -(2-12}

where r denote the full matrix trace-
Let us represent how the matrix g(/", I‘-'/' in the form

! Mo :
BAL) = > ségﬂ;t)ﬁg (2013)
k=0

where Bg(A", ) are scaler functions and’ A =f&£dentical

matrix NM x NM. Since all block-elements of matrix A are dif- |

ferent, eny block-disgonal matrix B can be represented in the
form (2413) (see e.gs [25] , chapter VIII).

Correspondingly for ‘B(’/“f f) we have

BHt) = > BiHHA* . (2.10)

FEx

In virtue of (2.14) the equality (2.12) is equivalent io
the following onc

(/.

< Z ((14 (’UP = £ (/1 /y&&i"i} ) (2.15)

where < P) 4 f dx f:r(’ P(z))

10

The equalit:,r (2.15) is the relation between P@t)
P t) ena F f.:t‘Zf A, F (.I* Z,A) under treansformations
of the form (2.8). This equality contains the quantities/!(/l,)

‘3‘ (’A“"zf) (’:5 =4 Jﬁ’-z”) which explicitly depends on spect-
ral persmeter AY. Next step (which is standart for AKNS-tech-
uique) consists in the converting of the relation (2.15) into
the form which dnea not contaln explieit dependence on )t s 1N
order to do this one mugt calculate so-called recursion opera- -
LOTH.

iIl. Recursion operatore

£t
Not all of the elements of the quantity @ o are inde-
pendent ong, Indeed, with the use of the equation (2.1) and »»
equation 26 = - £ 44 p) one cen to show that
: o : {
Zatiafies the equation

2 ~[a,8] +PF-Fp . 0w

Since matrices A gnd P are of the special form (2.2) then mat-
rix elemente of can be expressed due to (3.1) through N-1
independent one. Ome can choose various N-1 elements of {or
their superpositions) . as the independent elements. The cheice
1s determined by conveniency reasons. The equ {2.15) glve
us certaln information sbout what elements of should be
choose as independent one. Indeed, let us umaidtr in (2,15)
the term which corresponds to £ = 9. 8ince #@“P) bﬁ% -
= -_Z zfr(ﬂ/ ~ st ﬁ*" 2 then only matrix elements v
F s .. # ., elve a contribution into the term with
£ = 0. These N~1 elements of m'“ we ghall ses,can be cho-

- ose a8 the independ one. This choice of independent quentities

18 the most convenient for our purpose.

Let ue introduce the uperatia 4 of projection onto

b-nd column of matrix: (@q);g ded Pe (4 K lest,..., /Iﬂ.,
ippliing the operation AJ to the equation (3.1) and taking in-
to mscommt (2.2) we obtain

11



P, = \E A (@, 4, (3.2)

,"; @;ﬂ.—r’q-j _(ét ){?)d e (3 3)
ﬁ%= ., V=-1)
where ﬁg ,4 S, +,JD(("-'1', t) (8 E%.)

From the recursion relations (3.3) we find

{__@”"“é‘ Z P"""”{@'p) AJLA Y (3.4)

AP O

& =

£

By introducing of the operators j/?f,{)z

/A Ao
% B, ¥ PG, -5 T GA” 0
(/,é'__z"‘,z,...,flr"—.z')
where .5’!?,‘, = ﬁ'= fm one can rewrite (3.4) in the
form
> & hew L 7)(346)
B, = s B A hsn ) 00

Taking into account (2.2) and identity

B L)L A" ==, Vems (3.7)
where (@ V).r.e J@Eam /f;‘{f: £, N-1)

one can represent operators ..f(.é)more compactly

* k£ iy st .
S s = F TR (P (3.8)
A =22,.., /1)

In particular, from (3.6) we have

12

| e
@, ¢ jr'?av—# i'/‘]i ; (3.9)

Substituting (3.9) inte (3.3) we obtain

£ A Bl A H AN = 1 B A

A=

.01"
- ol P P :_:
Z g (@a,«a%’) = A @ﬂﬂ- ; (3.10)
A=

& _
Operators .7’ in the left-hand side of (3.10) contain

an explicit dependence on Aﬁﬂ Let us single out this dependen=
S f
&

’
Since P = 0 the operstor jacan be reprepented In the
form .. v

- a-9f
-5 -y
£ > S (A-9)"PUA-I™...PYA-D)

med R Rt H = y

{3.11)

wheia total number of factors in each term in the sum is equal
to ®

F
4
The operator 64 - a,x} is

£ A e Aepry o 20
04*‘9) = 2 Cy4 ({'3) A (3.12)

= &
_ »r Y ¥ s
where Ck_“ e g ¥ and matrix A  cen be represented in
the form

13



AT TR (3:13)
where /"?Lt o Cgé Evs 1 (& k= j . M/} and é;rmbnl T

denote block transposition. :
gond using (3.11)-(3.13) ifi: is

Taking into account (2.2)
not difficult to show that @ ig linear function on

P ° SNy Vs e ) K3

The matrices /» and S¢# are caleculated by formulas

Dk()l#= a) =6Q - 3‘) 4 y

(3.15)
£ i : ’ o
+ 5 5 @-YPR-I.PR-Y™
ey Bt ey
and
d\/ g .:Jo...r:?
s ST "S:é—f-m/ Sw (3.16)
d(//} / /Iy"i? M-'n‘.j _fc}g :
Using the simple properties of matrices A and R one can
ghow that
o 0 0
Q
200G v b |
r.=1¢14 o0o. s OF Liofhed.  N) 3D
| -¢fa 1.0 0
E1lw o o
\x -C:,alcf ij
__,,k

14

and
hp - .‘f
(Sk).-re ” (/f?') Ew 1. ... A+t
ER M S 5 PRI A (3418)
Ay &/ ﬁfff—é’ 4 L y
(Sy) . o G N Y, | T
The rest elements of /4 end S, are more complicated.
Let us now substitute (3.14) into (3.10). As a result we
have

N o
XY 7 (ﬁ,"%) @_} f& ) (3.19
ong (3.19) permit us %o

The i}gat from N rigtri al equa
EFEVES ww Shrough %, , You, ..., Fsw

@i (xt,A) = fiéé" xth) + ﬁ,{rﬁuj (3.20)

,w:

where
e =~ L (Vi) —~(- VJ,)) - |
o (3.21)
e (o —Z a VT Yen)

Here and below ( o™ f) (-1') g f dy F(y) .

++The relation (3.20) contains inhanoganauua term
'w(X=70) . Bimilgr terme, namely L=roo0)
: will appear after integrations in the further calculatione
too. Taking into account (2.4) one can eaey to show that

(aﬂ})‘](&':.f m}l-g f/)-{n @?&.g 5./” EA(g’-_g )..‘I' (3 22)

2'=r + 00

Let us consider those @"w for which Ke (-2""‘*— Q‘z'ﬂ-cf? ’

1eee

15



2 E (1) CoOA 2 (n-1) :
——— et . %
Cos —7 > = (3.23)
Since /\ S (O then for indicesnmend [ which satisfy (3.23)
we have %{fmga;a('g g"‘*),};r == 0 . and therefore

;’I:‘T'{ I.z‘—:*oa) = () - The inequalify (3.23) is satisfied for
example for following valuea ofnaand L 3 L, Pl*-'ii"’- 21, LI «

Eow) @-r
Let us denote by the subspace of quantities x4
for which ”fﬁ-“d”ﬁr= +0a/= 0 , Then in gll relations which

contain @dﬁ} the inhomogeneous terms (*)(31‘“1‘ o) will be
absent. In perticular, instead.of f3 20} we have

@r*?x z,A)= Z&' érﬁ) i (3.24)

s

With the use of (3.24) we obtain

= () = ()
@;” == Mq (3.25)

where
LD ... B0 O w0 Py
M 0ig... .00 0 et © .. 0 Pon (3426)
Y A e e Nk
T o SO ka_.. 0 Pw
B A P TR R~ e * .

Substitution of (3.25) into (3.19) and use of the identi-
ties

;E’M = /i (.é:.f.;“.} M“'.f)? (f}'—-fm)Mﬂf‘;{, (31273

- glve
l‘i"(*)
A G@ @T {3.28)
where
M :
G = fm{-ﬂk’./ "'.gvn (3.29)
=0

g ‘: & (MQQM” (3.29)

ap o

The relﬁim t3 28) alrer iy econtaing only independent
guantities @d . However the matrix %‘w has many zero sle-
nents and have in mind Purther Hamiltonian treatment (section )

it is convenient to introduct M—1 - component quantity

e ) () Lowl 7
A== ((ér,w‘, )?;, i b irwid « The relation (3.28)

is now of the form

N A (R == 2 0F) '
ANE K = T° (3430)

A

Matrices & and 5 ars of the order §N=1 rud equal

{."‘fyif e ;“.-- {ﬁ")ﬁe (*Z-,-) =Nig

# =0 (3.31)

F o =3 ) chm); u)V

e Gl 4,..., VD)
where ,QL& =*"J:Ef.f.f.f {’f_‘)f:: Z, ) M-—-_{} and :

( )a-f = m—'/jﬁ-f.f,e s

Se)ie =(SWies, e, (€ Losplind/

(3.32)

and matrices /7 and -.S‘é are glven by formulaa (3.15) and
{3:16).

14 follows from (3.31),(3.32) and (3.15),(3.16) that

/—FNEB 0 ubieds O 10

"; | sz '.ﬂs’;a 2 S G' a

-~ |
{‘}=.._.._ e r3n331

k‘- Grey  Gorz - - oy 4N a}

iT



Matrix @H—i is easily calculated. It is & lowertriangular one

(@ﬁ'yz_‘& = 0, i<k ;'} and
(E:f“};i el E,f_ a_‘ﬁ.r
ud A )1 L, (3434)
(C:—"Z‘* :Z (c‘)‘" (dé";‘f) (G)f o (‘ 5#»)@),;#(‘@;&)@;*(« &)
£ ia i, R s %

where pummation in (3.34) is performed over all possible divi-
ding of integers from £ to L into pairs. For example;

(Clee = @iz CC)7 | Cha=-Ghra GulCin,
(G) =G GG +(G5G.Ce G C

One can verify that matrix operator @.__& has no nontrivi.
al kernel. Thus, from (3.30) we have

Nz t0)= )X @ es) oo

where
| DR g, A (3436

The operator _/l is just a recursion operator which we
are interested in. It playe a fundamentsl role in AKNS-techni-
ques. The explicit form of /1 can be found by formulae (3.36),
(3.34),(3.31),(3.32),(3.15) and (3.16).

P
In our further constructions we will need the cperatcr./{
adjoint to operetor /| with respect to bilinear form

& LS o/ f?—a{r:f‘ (CKi(x) X:rx)) » The operator
/7 is calculatea by standart rule [ KXAXD

= L (AX)X> ) anditis |
_/l?‘ — f%@*}‘f (3.37)

—

Operators g’?‘ and (;Fjar&

18

7y 5% 5
(S = -%-%5;,).1;1'#( _Z‘f:‘r%(gj;yé ;

=0
3 {3.38)
af ?‘ 1
fg)r s Z Vn@?&*ﬂ s 65,;;,;.,,1 ;
; im0
(i d=1,..., #-1)
where
ye 7 - 4 -
b= L d@ Y Uy ~ Vio(O)} 124 9"*CH2
;;"’ .-ﬂ-"" = .
. Ay it R 13.39)
({V’. % fo"‘ﬂ’-..l C.;r"w-.f a ¢
o (£=2,2,...,/-21)

r
In the operators f,g 3.39) and in all mdjoint operators,(de-
noted by symbol 4) which will further appear (S"Jf){&}g""fa’yf&}.
. ; - -

-f-
The operators /% end S: are block matrices of the or-
der A and defined analogously to /%2 end §, .+ Namely

4 .
ST (3.40)
where
49 -0 .-, [0 AtV

D g e e e s e |

P = o s (3+41)
- = = 0 _.(V:’])

5 Tl A S ot Sy

The explicit formsof Ef and -Qf are calculated by formu-

las



K
Sf = P (A"=0) (3.42)
end
¥ .3 0...04)
,}?"= o o o ‘Sf /g .00 A
W gty o gt oS b '
: i {o,..ao

7 :
Prom (3.38) it follows that @: is unper=-triangular mairix:

(GCla= O , >k ad (§Hu=WN0 fi"f*'"'f""-‘gj
Motrix elements of the inverse matrix (é‘?f “  are

(C"‘):j, = (0, £>k,

(C) i = - a7, (343

™

G = Z @G (CLIE L GG IC
& ouu, 0,2 :

where summetion is performed as well as in (3.34) over all
possible dividing of integers from £ to K into pairs.

Formulas (3.37)«(3.43) glve us somewhat cumbersome but
direct procedure for calculation of the operator _/lf. Expliciv
form of the operator _/lffc:r gsome concrete examples (Il = 2,3,4)
will be given in section 8.

1¥. Construction of the ironeformations {1.2)

Tn the previous section it was shown that matrix glements
of @t'@"can be expressed through the quantity xr*’i{fomulaa
(3e2),(3e6),(3:25))s Let us trensform therefore the equality

{2.15) into the form w#hich contains only independent quantity
e '
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Uging the prnpe.rties of bilinear furﬁ i gnd equali-
ties {3.6);(3#25} we Ghtﬂin

<;4£Pf§m“",4k§%?> = <P!-‘7[2¢) JFN__PAaé (*))=

Ay

- C(PBM-PAMES

(4.1)

; N
Let us single out the explicit dependence on /\ . in the ope-
rators Fqp/M and A*M . In virtue of (3.6),(3:13), (3014} .
3,17) and (3.27) we have

Nr (.
ﬁwm = A Gfm gt 7 (4.2)

2*M = MR+ REM (423)

where

-
Copa * J‘E‘,,}w(‘é%“")’ (4e4)

e £
"52;'5'}' H’RZ Sj-—m(ﬂﬂ“%,,‘), (4.5)

FPw D i

and matrix operatora /, and S; are given by formulas (3:15),
(3*‘16}-:

Substitution of (4.2) snd (4.3) into (4.1) give

AP - TP = *
(4.6)

= <(")\”1‘DIG:(H ""P%&) ® A#P(ﬁvﬁkﬂpﬁkﬂ)iﬁ> ;

o
If one introduce §-]-compenent colum Vﬁ*‘,’; L) mem

: e
— (%(.I;f)) V;(mﬁ}a“-; .I’fv-x(ﬂ:-"-',y and
.'pTﬂ.ﬂaed from éjfw to /fﬁ?;;han ¢rom (4.6) one obtain

<A§PI§K#J__A*£‘{H:D> v

el el 3 {Frﬂl?)
— ENV oy VG XV Eew * VR XD
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where

( m);.g j (‘r}--fr),{..ﬁ' ( "H"-.ar) s
CFa)ie = 3 65’&-»94&( Vo) +Z Semdinlle )

F =0

("7(;:);:: ik 3;;}3—,#—,{-1 :
(/?r’;i) .8 €-£'1 + 31. N-k ee

(i, $,=1,..., V-1).

#J?:

(4.8)

Purther in virtue of (3.35) for arbitrary entire function

ﬁ%{jvﬂﬂ have
B, AIX Pzt )) = B, A) X (@t (4.9

With the use of the equalities (4.7) and (4.9) one can rewrite
(2.15) in the form

o 3
<£(“Vﬁ?¢;/f ~Vf.57;j > V,Z:“A
* VNw)Be (A, X*W)> = 0

(4.10)

The equality (4.10) is the fum of the equality (2.15) in
which the explicit dependence on A ig eliminated. Thig elimi-

nation become poeaible due to existence of the recursion opera-
tors.

At last, the equality (4.10) iz equivalent to the follo-
wing one

<x‘”wf BN O((NGL = TV

,_(A?‘j}:; _?L /\,fjﬂl) V) = (4.11)

22

3 =
where /7 @:"’; LS Kok /17”:) are operators ad
joint to operatnra g i f{.'ﬂ 3 f(w f7¢, with respect o

bilinear furm &X' x> =rf f;— CXEx) x(x)
Operator A" ie given by fgrmulas (3.37)-(3.43) and

,
ot ;
{ (ﬁ;)xe =..;%Za V;Lm ()}-n TS

K £
’@;}M =NZ-J %—M(M’t +.Zm£r M‘( M)Me.r

; {4.12)
ng‘; > b é]:}f—.ﬁ"*j' 'il

%;( - ;e‘-r—.{'-i 'f Sfﬁ’-ﬁgnr

(4 £,€=1,..., M_'f) ;

where operators t“"i{, -Sf and C’; are calculated by formu-
las (3.42),(3.39).

: 4
The equality (4.11) ie just the relation between vV
and Y ‘onder the transformations of the scattering matrix of
the form (2.8). The equality (4.11) is satisfied if

Wes
o S BN (K - M V) =0 (4413)
k= O :
where
A c:w {ﬁ), ( :
4.14
R T

If quantities }fm(::q. Z,A) form a complete set (as in the

case § = 2) then the equation (4.13) is alsoc necessary conditi-
on of fulfilment of (4.11).

Thus, we £ind the transformations of potential
Vix2)—~ "% £} which sorrespond to the transformati-
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ong {2.8)s These transforma-
tiong are given by the velation (4¢13) where ﬁ*ﬁft) are
arbitrary entire functions on ﬂf.

1% is imporient that the relatiom (4.13) contains only the
potentinl V' end transformed potential ’ ¢ We restricted
overselvs by the tremsformetions lew of scattering matrix of
the form (2.8) just in order that it will be possible to con-
vert the transformation law of scatiering matrix into the ex-~
plicit transformation lew of potential which contains only V
and VJ o Tt is remarkable that these "restricted” transgforma~-
tione {(2:8),(4:13) are quite wide end, as we shall see, con-
tain all the iransformations typical for equations integrable
by the spectral problem (2.1) and these integrable eguations
themselvese '

1t easy to see that the tranaformatione (2.8),(4.13) form
a group. Indeed, let we have iwe {ransformations of the type
(2.8), (4 1SYs S8 < LSl 8/ <B"8 G :
Since matrices &, &, &, C; are diagonal one, then

S =8 =880 =~ BB SCr ~ (BRI SGE;
is0e the product of transformations of the type (2.8) is the
trangformation of the same type. In virtue of commutativity of
diagonal matrices the group of trenpformationg (2.8),(4.13) is
abelian group, more exactly, abelian infinitedimengional group.
he transformaiions from this group are indicated by N fumcil-
ons B, (A7t) (#=0,1,..., N-1) entireon A? , which can
be arbitrary one. The group of transformatlons (2:8),(4:13) oan
be congidered sg infinite-parametrical Lie group with parame-
ters 1‘5,;,, () which are coefficients of the expansion of

s :
OBt A (OB (M) F 2 b () () :
We will refer the infinitedimensionsl abeliam group of
transformationg (2.8),(4.13) as BC=-group (Backlund-Calogerd
g‘rnup‘}f';
B-group which acte on the manifold of potential V/-'{;t,ﬁf-
by the formula (4.13) and on the menifold of the scatiering

i Backlund was the first who ¢ dered concrete tramsformaiion

of the type (4.13) (see e.g. ) and Calogero econstructed the

eneral transformations of fhe form (4.13) {in the case ¥ = Z,
]% = 1) for the firet time [27]. :
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matrices { S (A, £)} by the formula (2+8) plays a fundamen-
tal role in the enelysis of nonlinear systems connected with
problem (2.1) snd their group-theoretical properiies.

_ For the firat time 'th_g importance of the trensformations
of the type (4.13) was emphasized by Calogerc and Degasperis
(gee e.Z. [2'?-29] Yo They used the technique of gemeralized
Wronskians snd conetructed, in particuler, the transformations
(4.13) in the cagse N = 2 snd arbitrary M [29_]-

A strusture of BC-group is determined by the form of spec-
iral problem. In the AKNS-tecknigue framework BC=group has
been constructed for general linear spectral problem
%=(AA:=~P)V‘ where A 18 congtant matrix, for gene-
ral polynomial bundle and some other spectral problems in .
Refa. 66,17;-19] o |

¥. General form of the integrable
aquationsg

'ﬁc-group constructed in the previous section contains
the trensformationg of various types. Let us consider its one-
-parameter subgroup given by matrices :

A ¢ ”
Bt =Crﬂ,z:)==zle"4”“?”/’4’£) P i (5.1)
: k=0

where _Q,P {A"":,.S,) are some (in genersl, arbitrary) fumetions
entire on A¥. It ig essy to show that the trameformation (2.8)

with matrices B and G of the form (S.1) is a displacement in
time t:

' ./"i;’f..P,,E 2 e SRR
Shy—~shy=5et" o

S (5.2)
¥y 4
spy) S ATV 1t — s

The corresponding trengformation of potentisl 1e
Yizt) —> V/xt) ma ie given by formuls
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£ : :
fa'gﬁﬁ(ﬁfsj(mr/ﬂ? - M V) =0 (5.3)

A= 0

P :
where in the operators /1 . ﬁf and 4 one must put
Vizt) = Vix,s) « Por the first time the transformations

of the type (5.3) were considered in Ref. [27}, (for problem
(1.1) at ¥ = 2, M = 1). See also Refs. [28,29,16,17,19].

At fixed functions Q;. ( A": ﬁ') one-parameter group of
the transformations (5.3) determine a flow )_6 3
Viz,t)— Vi, Z7 4 in other words, an evolution system.

This evolution system can be also described by Certaln nonline-
ar evolution equation. '

Indeed, let us congider the infinitesimal displacement in
time:s Z—»t'=f+& where £— O . In this cese

Vim ) = Vizt) + € 2LEL
(5ed)
B, (N L) = s —ESU(A L),

=@ 2, -y N2).

Subsgtituting (5.9) into (5 3), taking into account that

e =ﬂ = fuu end kaeping the terme of the
first order on &£ we obtain
Mt

DN ONATEALL. e
H=a

e G MA*/V g, i - u%t/!y'.’y — Mpfv'my
Operators L7 -:r/y.y_, ./fff/y’.:y 0T calculated by
formulas (3.37)=(3.43), (4+14), (4.12) at V=V

It ie not difficult to show that operators Zk can be al-~
80 represented in the form

Lr =Tl 21t 34 R
3 $oyq m;f_f o M {(5.6)
+ 2 ».-2:1 MBRes) 0 | :
 Soan 5 (O W) = Yoms? )

k"Lﬂ"fﬂ (L k .f M-.ym&

‘where (?t;v_ ))Lg

d 00...061
i io...oei

I

TR
g - 760,

In p_qrticﬁlar, for arbitrary N e’f_., =M

Por the scattering matrix under transformation (5.4)

SiAt) =S(AE) +£Ml eand  from (5.2) we ob-
tain linear evolution aquatinn

a’SKA t) [}/(/i z) S{), t)j (5.7)

o

where

Yint) =5 QA"

B Thue the consideration of the infinitesimal transformati-

‘on (5.3) leads to nonlinear evolution equation (5.5)« S0 evolu-
tion equation (5.5) give the flow %2 3 V/.:I; ) > Vizz)
in the infinitesimal form. The relation (5.3) which does not
Fmtain the derivative 3%;‘ is an "integrated™ form of the
evolution equation (5.5).

Clase of the squations (5.5) ie characterized by integers
,‘V M by reeuraiun nératur L and N-1 arbitrary functions

A’Z‘I),Q;{ Yol Gkt wtisa o X' . e chatee of

2T



“soncrete N , M and functions ;Qﬂa(/i‘*; ) give us concre-
te equation of the form (5.5). A few examples will be given
in section 8.

The nonlinear evolution pertiel differential equations
(5.5) are just the equations integraeble by the inverse scatte-
ring transform method with the help of spectral problem (1+1)0
Using the equations of the inverse scattering problem for (1.1}
(Gelfand-Levitan-Marchenko type equations) one ceam find, in
principle, a broad olass of exact sclutions of the equetions
(5.5} At ¥ = 2 end srbitrary ¥ the inverse scatiering problem
was considered in Ref. [30] it ¥ = 3, H =1 it was discussed
in Refs. [31 ,32]. See alao Ref. fEd»]

in the form (5.5) one csn represgent a broader class in
the integrable equations. These are the equations

y
' oyt
b o8 S oo Ao 3% R <l

g i (5.8)

M-
OB T

A=t

where £, (M, L ,Zp) mnd Qﬁ(ﬂ) Py Z’Iﬁ) are arbit-

rarr functiona entire on /(4 » In this case the scattering mat-
"wE SPA, Z'_,J .e-, Lp) satisfies an equation

35S Lo B0
% (A t-‘,f ) 22, "

i ZMIZ N Loy LIRS SO 120
A/

At ¥ = ? the equations of the form (5.8) have been considered
in Ref. [29].

In the case /2 = 1 the equations (5.8) are equivalent to
the equetions (5.5) with meromorphic Punctions : _Qréu, £) =

g‘./n;t)/f/;{,;)- In the present pa.par we will consider fhe

g8

oquations (5.8) (or (5.5)) only with one time-type varieble t.

Let us turn the attention to the fact that in virtue of
(5.7) at any functioms 54 (A% L) the diagonal elements .

de (aff A wM) of the scatiering matrix sre time-inde~
pendent

dSen . g (a=1,..., NM)",
A
8o the gquantities 'Sﬂ (’-‘U (ﬂ'=-fp--,; A’{M) at any va-
lue of speciral perameter A are integrals of motion for the
equationg (5.5). One can exiract a comting set of explicit
integrals of motion from this continual set of inexplicit inte~

totioc aeriaa on A
tr'(ﬁ? .55(}1_)) QE AT e we nbtain a coupting

: sralaﬂ mtinm Indaed expanding f!/ﬁP&rS;(A}) (where

Bet of the integrals of motion Cﬁu (P= N2 n=G43.)

With the use of stemdart procedure (see e.g. Refs. [24,1ﬂ} one
can caleulate sn explieit depemdemce of Cf: on potential V@é’
At N = 3, ¥ = 1 see ec.ge Refo [31] .

An importent property of the integrals of motion C'{'u is
their universality: they are integrale of motion for amy aqua-
tiom of the form (5.5)e Indeed, in their censtruction we use
only the time-independence of OSgu(/) e=nd the form of spectral

problem (1.1) but not the concrete sguations (5.5)¢

¥I. @Group-theorstical structure of the
integrable equat:l.ma

The general trapsformation prupartiaﬂ of .the aquationa
(5.5) are mainly smalogous to thoss foi the equations Integrab-
le by spectral problem SZ—= QA+ Pty _ (see

‘Refs. [33,34] )+ In view of this we shall &well upon them brief-

1y.

BC-group consldered in sectien 4 ﬁl_af.j'a a main role in ths
analysis of the general traneformetion properties of the equa-
tinna (545}

Let us uunsidur the trmnrumtimn {2 a) (4-.13} with
timeﬂin&apmﬁmt matricua B and C. These tmgfmutiona Porm
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“en infinitedimensional gubgroup of BC-group which we will re-
fer as B-group (Backlund-group). It ls easy to see that the
trensformation law of the scattering matrix (5.7) is invari-
ent under trensformation from B group, i.e. at B1 S .S"' we
‘have aT‘f.:i =z [Y; 87 . Therefore, in virtue of one-~to one
correspondence between the equations (55) and (5.7) each cone-

Nz
rete equation of the form (5.5) (with fixed function Qf (A ,f- )

converts into itself under the transformations of B-group.
Thus, B-group is the infinitedimensional abelian group of au-
to-Backlund treansformations: these transformations convert the
golutione of definite equeiion (5.5) into the molutions of the
same equation,

)
The simplest auto-Backlund tranaformation V —"'V cor—
responds to copstents B¢ (A =0,..., N-1) end 1t 1s of the
form

e M) =0 e

A=0

In the recent paper [10] an auto Backlund transformation
for the equations connected with problem (1.1) &t arbitrary ¥
and M = 1 wae considered. This Becklund transformation is e
special case of the traneformation (6.1) with M =1, B,=0,
and certain comstants B,,..-, By

fhe explicit form of the transformation (6.1} at ¥ = 2,3,
will be given in section 8.

B-group contains as a gubgroup the infinitedimensional
abelian symmetry group of the equations (5.5) Symmetry trens~
formations are the transformatione (4e13) with B,f STy =
= BIP_;&,().") where _ﬂ,(’)""y (,é=r__z;__,;ﬁf-_f) are arbitrary en-
tire functions. Really such traensformations, as it follows
from (2.8), does not chenge the diegonal elements of the quat-
tering matrix and, therefore, the integrals of motion C',, gnd
ag & resulé they does not change the Bamiltoniens of the equa-
‘tioms (5.5)s |

r
In the infinitesimal form V—""V"V*JV symmetry fransfor-
matios are

o
SV(x,t) =2 £ UYLV —  (6.2)

K= XL #

The infinitedimensional abelian symmetry group can be al-
8o congidered as infinite-parameter abelian Lie group. Indeed,
let us expand entire functions (Lf) in the power series:
Fe (LD =Z.ﬂw&v# | o As 8 result symmetry
trensformation” (6.2) is rewritten as
! oo
3 V = szxﬂ(‘;v#oggV

ke #=0

i.8. 88 a superposition of the infinite number of one~paramster
gymmetry transformations

CSL(,EJ#) V —— fh@’)”ﬁk V (6.9) |

where expansion coefficients fyn (~o0 < Fip<*09)
play & role of the iransformation parameters. Let us note that

. symmetry trg}lsfumﬂinns (6.3) are connected with integrals of

("
motion <, .

If one omit the trnnnfomatiun.parmetejg Sere from
J(j;)g)v then the corresponding quantities Jria V(ofmy V =
= Fin fﬁﬁVare related each to other by & simple formula

-S;,{,ﬂfij Y = LfS:’*;ﬂ)V ; (Ged)

« At ¥= 2, M = 1 an analogous properties of the operator
L wae firstly noted by Lenart (see Refs [35].

Let us emphasize now that B-group of Backlund-transformd-

~ tione end symmetry group are universal one: B-group and symmet-

ry group are those for any equation of the form (5.5)¢ The uni-

versality of the symmetry group is of the same nature as the

universality of the integrals of motion.

Let us, lastly, consider the transformations (4.13) with '

- N



time-dependent fwnections B/ %)= C (A, 1) .« In virtue of
(2.8) the evolution lew of the seaitering matrix {5.7) consger-
ve its form under such transformations oo, l.e. under

S —8§'= BH)SH)B{t)

WEB L) o i et ‘
LSAL = [y(,8.808] &7

whers

ViILE) =Y (42 -ﬁ—&'-z Bt (6.6)

Tt follows frem (6.5) thet the tramsformaiions {2.8),
(4.13) with time-depemdent fumetiens O (A, L) convert defi-
nite equation of the form (5.5) (with given 7AT)) inte
other squationg (with V‘}ﬁ, £) given by (6.6) of the form (5.5
We refer such transformaticns, follows Réfs. [2'?’-29:] s 88 geno-
ralized Beoklund transformations. These trensformations connect
the solutions of different equations frem the class (5.5)e I '
follows from (6.6) that genersiized Backlund transformations
get in a transitive manner on the whole family of the aquafinna
(5.5) (at fizxed H amd Ele . :

. ghus we see that BC-group of the tranaformations (248),
(4.13) contalns complete information on the general grnub-thaa-
reticel properties of the equations integrable by (1.1) and -
thege integrable eqnations themselves.

VYII. Hemiltonian structure of the
integreble equations

: Lot ug congider the equations (5.5) with arblirsxy entire
punctions Op (LT, £) o Leee :

# i
O (LTt)=2 &, (t) (L) (7.1}
=0 ;
e Win (t) ero erbitrery funetions. We will vse the me-
'iﬁhﬁﬂ. developed in Refe. ﬁ2,15-1_9] fPor proof of the Hemiltonisn
iﬁharmtar of these equations. . : '-
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Pirst of all let us note that from the relstion (2.7) we
have ;

33;:}5(!*.; t)-‘ﬁ -{CF Vr/?ﬁfﬁi(’j';ﬁ)) {7;23

e
where (,j’ V{.ﬂ, .-;f} ig arbitrary veriation of potential V. /g ﬁ-

is 8 column with -1 components @:TJ’(:.:;J;A),* @;ﬁ‘”ﬁl} R
@ ‘Tﬁ(&;;‘,})whiah are matrices MxM and (@(“ﬂ(,n;;,l,]){d' -

M ;
DN T (o gyl = A2 MM . Here
and hewﬁé— o8 xS B 1 (e T ()=

= é fdxfj‘-(r‘;{# 2';(;;)) where X and X’ are colums
with ¥-1 components. ' '

?he relation (7.2) means that

s ) - SplE) Ot Y3
(x (=4 ))8 d Iéf(/i', z) &, “"’:x":w"m)

: : ' T
where 5‘% denote a variational derivative and Vé is a transg-
poped matrix Ve «

' ' *)
In the further constructions we will use the quaniity ﬂ

(&) iﬁf MMk Yﬁd}( ;t;’i) (T4)
” (I!t!A) g(ﬂ)ﬂﬂ Sﬂ()‘)

w 10N = EXSTE V) (E=2,es W)

Prom (7.3) we have

S tr (B Se) (1.5
SV =t

nm(x: th) —_—

that is our baelc variational equallity.

fhe further atep is to express the nonlinear terms in the
equation (5.5) through the gquantities ﬂrﬂ. Itis nafessarx.
for this purpose to find the squations to which ﬂ{ satiefy.
Let us stari from the equation for quantity S‘J "s’l It is obtal~
ned in a menner completely enalogous to that is used for deri-
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vation of the equa‘ticn Ton ét (section 3) and is of the form

] et o =7 /el ud =
/\"’(’Zrm(@ﬁ’%&) ‘?ﬁ; *‘"’)zﬂ;gm(’ A’:f‘é W) (1.8

=0

where matrix operators /), and Sy, are given by formulas
{3+15) and (2+16). From the first nontrivial equation (7.6) we
have

wsf“‘f“’=):[x-; g Z(a)"“'"’c* g

K

Mat Neket A p = J'E' _f(q}!}V {TaT)
"Z Z [ ~0) .#’—M-f AN Vo-rm-d
Ke) m=D
Integration of (7.7) over X' give
B t,0) = Bl o) S E B e
A’-.z‘
where
-— ok k-1
g.ﬁ'J-j;' -1, 74 _'_'/’_a} Cﬂ :
(7.9)

k-t Lk
= '_i (a}y‘ B M-M-J(V“‘""”")

Here and below (c)*'-ff)(x) = fa;’/f/é’/ .

Taking into account {2-4] one cen show that

(;D-f{am’r# m)),w s -—*‘(/‘Qfﬁ’?) -Swf,. _ m i
fu_f)...j My R E=1..,M)

where [—E-] denotes an integer par‘t of the number % o In
partiaular, Q*ﬁﬂ?'.fﬂﬂm))yx !.H, L Sox « A8 a8 result
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.. 00 >

7 raa) —* o)

e 1
P & +F (7.11)
) o0
a‘éj 0 ,..aSau:ﬁ
where (Qd).-:'.k = cﬂ,‘,’;@i# - (@d)ﬂﬂ = 0 and
dfen 06
— def
M = Qx84 00 (7:12)
¢ 0...40
S I ;
Substituting (7+11) into (7.6) and taking into account
that
N U e -0
; 'S:W ——
m=0 e R
0.. 08,1
we obtain
e'ﬁ‘ﬂ':’ frﬂa') s '
A/Z Im( P, V)P f*'Z,,,/‘f 5o, (7213)

=0 =0

; . - (27 ol L ety = 17
Introducing the quantity )Lﬁr - [ﬁfj $iag gpﬂ;y) 3

we have
AGEX ) = S =) (7.14)

from (7.13)

-t " —
where (- and fara matrix {4'&!)*4{*1) operators. Their mat-
rix elements are

(@7.&,4: Z@)ﬁfi K ( -’”) J:(;Ltf f
( / Z(SM)JL#I i'( ) _ZGSAU)M({* )V

M=o m= :
(i,k=1,... N-1)

(T«15)
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"1t is easy to see that matrix & i1e lowertrisngular one.

| + = (& ==
and (@);:;‘. ="fﬂ/a H+(15= g,y oeny ﬂ"‘-f) . Matrix elements of the in- (Cfﬂ }(Is‘m))g i P/V((G)gfﬁﬁ.k 3/‘11{ ==

verge opserator G are

(Gl =0, i<k, (ih=ty, 1)

(Gf) g;, = "f"‘f&'awi:

Q- e r k<N

== 1, g+ k=N
(7+19)

(T»18) ' ’x;m@?;("é;)(g); s -(@?:ﬂéé;,ﬁtf)'il C+k>N

where aﬁiﬁrnation ig performed as in formula (T«16).

7me shortcoming of the equatlions (7.18) is that they con=-
Iy tain the operator Z' instead of operator LT which define the
nonlinear part of the equations (5:5)

() = S G -Conl (G B C 5t Cee
s

Ay

are summaiion i pformed over all possible dividin of in-
whats s SR 2 = . . However, 1t is valid the following important
tegere from £ to L into pairs. :

_ : e, Theorem: The relation
peking into account the nontrivial asymptotic of PRt . i
at X-> -go (see formula (T-10)}) we obtain I{rom (T-14) the .jL L L J ; (7.20)

following relation
¢ WL holds wacre -7 ie matrix (V-2) * (4”"1) dlfferential operatore

- — e = = e ) ;
A”’/f‘m}ﬁi; Y ={(;/) _Qz,f‘{“"”_ o ),CTX{ (Z==00) (T+1T) Its matrix elements are
: s = J'l'“.f“ﬁ-"'a’:’ {:_‘. V a f’
e g I A = /c 4 . o 5 g
where O = -'A{Gy "ff:}) i : €A % Prwi-o Erith—t [/ )
- Pinally, multiplying left-end right-hend sldes of (7.17) o »
w e e e o e T e R Ry,
' (4 P R Lo .18 | .
A AEtAe LA 7 NG 1 (x=-2), el Jix =0 at [ kS Nit, (i k=21,.,M21)
tﬂé.nfzf...,xﬁ-J)
(&) g > & 57
where are defined by (7.9) and - o _d-ﬁ_.__.-f
/7 where Cg ,f,f{!- 7
" f’ﬁf =) &F , Thig theorem is proved by direct calculations with the
= (¥ : > .
_ e 3 uge of the relations (7.15),{?:16},{?-9),{3-15),(3016).{3-21]»
The equations (7.18) are just the equabions for [7 “wnich (3.37)-(3.39),(3.42),(3+43). One can show that the operator
wa ars nesded. Inhomogenaons terme Z;gﬂm) {’Ir—% em}' in (7.18) is invertab]}e and _7:=*-.7 . Let us also note that the opera-
Pt et P! ;

are easily calenlated. Rsally, wiih the use of (7.10) we have tors :?(E;i and (’5;)1_.7 are pure differential one and

1&’ . - X - g o -

(}'{ ‘{f:_qj-:*-m))g e aﬁ&fgﬂ-ﬁ gnd therefore é%.} PR i e .

'. : _ The relation (7.20) allow us 10 cnnjraect the terms
i . e @O*;}_‘J{:V with the quantities /7'( 'J.
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Let us substitute the asymptotic expanaicn of 1’7( o
AT,

1% tr) = > X[ @)

A=l

into the equations (T.28): As a result we obtain the following
gsystem of relations

[1°7 (z,t) =G [1%(=x==-2, (7+22)
. & ;
1,7,_»;&; Gt 2 I ”gf (7+23)

(k) gty 3
s L PSRG0T IR TR Sl

Using the equality (T+22) and the explicit form of the
operators J , L and . cx.t one cen show that

.7.1:/7(‘“#]1,5"/7“:-“ 00) = .z,fV (7.25)
(k= ..., N-2).

In virtue of {(7.25) and (7.20) the system of the relati-
ons (T«23), (T.24) im equivalent to recurrence relations

:&" V jﬂrk] (T«26)
4 (ki k=d,..,N- :
/_rjﬁ(j jﬂe,u éu:z }

It 1mmediatelﬁr followe from (7.26) that (L) 2} V ==
i Jﬂ or

(Z,v szV (L}‘f’jﬂ $+J_' (7.27)

where /M = 0,1,2504+, &nd ?, is arbitrary integer.
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The relations (7.27) give a possibility to rewrite the
equations (5.5) with the functione Q.a’r (zif fi) of the type
(7.1) in the following form

.r /e
ot (Eﬁ:}g% nr)f)f(;?;;ﬁr

At last, due to (7.5), the equation (7.28) (and therefore
the equation (5.5)) is equivalent to the equation

S f‘(r Bl (L?g]é‘?_gi}- (7+29)
where
N2 o0 A — =K
% Cnl(t) o f?!ff/f‘q &Ss(;’*)) (7.30)
g az (r+g-2)! QLTI lpmne

and (.], is arbitrary iniiager.

Tt is easy to see that the equation (7.29) (i.e. the equa-
tion (5.5)) can be written down in the Hamiltonian form

VzY) _ {I/’/_q;zjjﬂ j (731)
dt s
with respect to infinite set of Hamiltonians (7.30) and infini-
te set of Poisson brackets 2’ ! } where

! F #87dK
{J”f_?fjg faf &—(£ V’"Vé"f! LP757e), @@
(¢= q::z,:z,...)_
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The fact that the brackets (7.32) are indeed the Polsson
brackets is verified by straightforward but cumbersome, calcu-
latione.

Thus, it is shown that any egquation of the form (5.5) is
a Hamiltonian one with respect to the infinite set of the Ha-
milionian structures. Let us emphasize that this family of the
Hamiltonien structures is an universal one, i.e. all of the
equations {5.5) are Hemiltonian one under the same fanily of
Poisson brackets {7.32).

The bracket { , }, is well-known Gelfand-Dikij bracket
which was calculated (by another method) as far back in
Ref. [2]. The bracket { , }, corresponds to second Hemlltoni-
an structure which wae discussed in Refsge. .[4,21.22,5’-?] - For
the first time the existence of the infinite family of Hamiltio-
nien structures for eguations iniegrable by the inveras scai-
tering tramsform method wae pointed out by Magri (see Refs.
[36,37] ). Then the hierarchies of Hamlltoniam structures for
various integrable equations and thelr properties were discus-
sed in Refs. [38,4,8,9,17,18,19,21,39] .

Let ug attract the attention to the operator B 4 (Gelfanﬂ-—
-Dikij operatoz} It can be calculated by various methods. In
the AKNS-technique framework, with which we deal in the pre-
sent paper, this operator has aleoc a sense of the gimilarity
operator which relates the operators L ar.lnti_)fa"P acting in the
edjoint one to another spaces (relation (7-20}}*.

TIn the conclusion of thile section three remarka. First
remark: in virtue of (7.20) the equation (7.29) end brackets
{T+32) can be rewritten am

DT t) g d-Fog
‘g‘r. e ~7(Z) CF'VT

and

% Jhe same trestment ig possible for snalogs of the operaior
J for Hamiltonien ﬂtrmgures connected with other specirel
problems.
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_ o dZ g S H
(5, =< 35 ALY
a”b"/,q-’?&ss/ﬂ/f_)_/ e, Cf
A== 0o

Sec?"gd remark. BSince 57 AR
where C,  are universal integrals of motion for equations
(5+5) (section 5) then the Hamilioniems -ﬁ‘:ff are

(&)
Hy =22 Ghalt)Coges

k= g=0 *

Third remark. The relation batwegn symmetry transformati-
ons (6.3) end integrals of motion Ci‘}ie the following one

Stm VI ) = = Fen] Vi t),Chur }, = aﬁ,,_:rf_‘g-éfi.

¥ill. The examples: N = 2,3,4

Here we illustrate the results obtained in the praﬁnua
gections by several examples.

The cagse N = 2

In this case c‘fj e E"F—((/a"t') X' %{3"1:}-2-‘5-3 end

transformetiona (4.13) are _
B.(N ) KV -MV) + BAENHV-MV)=0 (8:1)
where E"'ﬂn"fﬁ _751* 3"'3:- A —’f(:f":f:
and operator AT acts as follows
AP = R AT + YD 4=
;-%/32 + 20 +2(V) (V) 0™ + o)+ (8.2)
(YOI - U (PV U YO -0 )}
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b= =3 + FE V)
?, : end from (4.14),(4.12)

The integrable equatlons are of the form 5 é’*
1

ok _ o 1tt)v =0 (8.3) g7 : i i ey
T kb o . 5 ek, SONGh o adcdislag

where

L =L(0" 2V, ] + (9K, O~ [ + .

FeVfrll, LYW w280+ EE \ .

(8.4) _7{2=

+[K a_[ZJ a"-/--/-j P a+€: O+ 1/ —(b )aV +£++2€*(3+€*/
and FI B] =AB:BA « Operator L is

F=2{ 3 + 24 -0, ] a'yv;,a'/u,jjj o] GF (C} B TRE

-4
ena J «20. e, (V) +L0 )av+£+£”‘
The operators A b L f, trangformations (8.1) and the equa-
tions (8.3) coincide with those obtained earlier by another Operator A ig 2 x 2 matrix operator which elements are
method in Ref. [29]. s / + ot _{_(a-'_f /
. P + € . . Cﬂ/ﬁ
Bakclund-transformationsg (6.1) is well-known soliton Aﬂ V; €{ 9 > )( )
Backlund transformations for matrix KdV-family of the equati- a / +2 + . y
ons (8.3) (see [29]): P 0 8]+ )RV

'y : (8.8)

28 (U-,) + (% - A = 0 e (W) + 0
— }fta {fpf pc) C} . ! -1 /)
b )V + 107 ) O+ 620K

The cege I =

zz g fj c 4 .[eif ; f;_L r fzj- (V;) P ( TV:) & { BZ‘)‘E"

At N = 3 from (3.39) we have

0 =- 43 - LU +ZOV-URY), @
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+ 2O+ JEYIU + 3OO

7 7
where f_, and é are given by formulas (8.6).

General transformations (4.13) are given by three arbit-

rary entire functions &B,A7%), Bjaff-) 5B; /Ar t)
where the operators _A?" A, My are of the form (8.7),
(8.8),

Sim‘ple!‘t Backlund transformation (6.1) in the s.aalar case
M=11is

B(1Y) B ~ SR U (L) ATV

B~ OUHY) + SO + 50+ HE U -SY Y-
- FOF UG +FORTOH) #3011 -
- FUEY) (YY) ~ FOVU )oY YY) +

Z OB VYY) = 0,
B[4 V) +B{OY + UV, S ()oY )p #
B f-FU-5Y V) » F YUY
* FU- W)V R 00 V)11
¢ U TR 7 (F OV V) }=0
wha:rs ﬁ ﬁ_ﬁ_ are arbitrm congtanteg. It is easy to sse

that fnr “pntmti&le“ Ma, h{f which are defined by formula
M —QM, ( £ = 0,1) the transformation {88) have a

(8.9}

G4

| ; i
|
{

local form.

The general form of the integrable equations is

b ) L3y ( )(\;J

UL -2 - 220~ e.s
+Q(Lft)( g ifz J@:W’J (V%\&){ .

' /
whare operator Z. is calculated by formulas (8.8) at Z=‘Va ’
V ==V We present here the explicit forms of matrix elements

of ¥ dn Vintdeglan dughll & 1 (&=-304), & =-2 )
Ly =40+ Vo + LU0 + 20U,
L, = 40"+ 2V, + f{dzga*i :
L, == 40"+ 20%)-Fud- £ (1)~
o ;.f—z" + FOU)O ~ $ V@I - ZNOYR,
Ly =50°» SV - $U-) -5 OY)9Y) + £V,07)

In scalar case M = 1 the equation (8:10) with linear func-

f-
tlons Q= ), » Wy L7, 52,=&Jm+a&,£ is the
following system of two equations

2L — 0oV, # f~£-0, # 50V, + £V W) # 2\ Ue2)-
- 2 YUY - 3OU)OY) - LU} + 4, /O -
#faaz_\_f_gagj f@,/—fd‘rf{—faﬁfz/“ (8.12)
- £0(150%) + £-0(UK) - £0/UK) f

(8.11)
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A

# Ghof 200~ Yp + bheaf -2V, - ZViOYy) —
- EARY) - FYO + £AVI]

The gystem of equations (8.12) containes some well-known
equations as particular cases. At Gro = Uy =l =0
gyatem {8.12) is

oL agm/a’V—:?—a"V 2131

(8s 1:":)
31’/ p az
£ ag, (..a v — V)

It is easy to see that the system (8.13) is equivalent %o
the equation '

6“"%’ 2 7ra N 2/472))

{ : g‘g{'-"*‘"—é—%a(z—d V'»“"a(t/)

~ that 1s Bousinesg, equation at @a-"dﬁ The implicabillty
of the inverse scsttering transform matlm& to Bousinesg equa-

tion was demonstrated in Ref. [40]

Another interesting special case of (8¢12) is (A{M =
- W, = W, =0, i.e. the system

e e MU A « £HUN)-
EYGEY,

(~40°% - £ V)3 £yyoy)— W

-F10Y + £o%)

A
7, o

s

2L = 4,0, + {30 + 3O 3AVY)FAY-

Under the reduction P; fj:az and at @jﬁj.{l the gystem
(Bs14) ig reduced to the equation

-g-;_u— = Y + YW +LEW Y +SYY

which was considered earlier in Refs. [8,311 .

Let us note that the system of equations (8.12) does not
admit the reduction Va = O

ThHe case ¥ = 4

I'5:;1?"
Operators L; are

4 == §O-FU-FY 4@ - U7,
G == O~ 41 » HOVU-Y(OYY) &
&=~ 29+ HOVY- V(7Y

l'.

. For operator _A?‘ f@_/ we have ( & = 1,2,3)

F= 487010 + 40 )V # O+ d;%@‘,_cgﬁ@
T 480Dyl Vi » LYY 428U

* Y)Y, + - OVie + duf 40 U'» 2( OV}
4 disf 4670+ 43 ) Yol + 2(OV)

T = 4416,0 ~481870 ) # 38 7U) # LT

+ 847(0:5)0U’ +3¢"?‘/sz/ 4¢:@)Vq*y/dy}f (8.16)

4 6/ )Y+ 4(0)O Yt # DU~y — O UV =

- 200 UPVis (@) Vo Vry —diz {959 Vo= 8/2:) 4=

~ 3 WY - &S9OV - _8/0, )oY - 3/0 Y43~ 3(K) g
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7, i=K
where "J:i# 7.:2/ / and

[ 7 N1 / 9-}' 7 ~tpt , {072 e s
? ‘?3 7 a g

- 0, i&"

The general equations (5. 5) are charscterized by three
arbltrary functione, operator /7 is calculated by the formu-
l( o
lag (8.16),(8.17) at [/ =]/ and (in sceler case M = 1)

=lo ¢ 23 , o4V, ,-2v1P-1 |/

= /2 0 0 (%W, O %&’-}g&iﬂ&m
ol 4 _”[ 2=(
\
<SP GRS: > B s -2 0 /

\ O © 3;

(D01l -20"- Y- 2o, 0§43

A

2| 30K, -—.za*-“ 20" 2Yd-FY -V,

30 e, e O, 40 LEIP £ ¢ 05 N
The simplest equation (5.5) at N = 4, M = 1 corresponds
to constant _Q_ﬁ_f?l i _Q end it is the system of equations

QL= QO +Q,(F% + IV - £ U - FdV,) +
2, (7Y~ JIU + OV + 7Y U » G YV Y + $RI-2/0)

(]

2 QoY +Q 20 OV, +20U - YOU)+ 23
-2532/' »3Y, - 2 Y oY - 2 VedY; ), (8.18)
%:Q&Z f_(?‘,f.?aik’t?c)lé/ fQ@%—fﬂ%f&Q%-fZﬁ@_

4%

In the perticular case (), =0 the system (8,18) admit
the reduction 1\?}_:-.- m and it is reduced to the system

Q(.&' a; poF s -3Va éd{yaz%y‘*ﬂi}v
g_?f-%ﬁga("fayg 7"53%—673%' 2/ +4-Qr19\£,

1Xe C OoBn&lusion

Here we briefly conglder some other approacha to Gelfand-

-Dikij aspectral problem and compare their with that glven in
the present paper.

It is congldered, to our knowledge, three types of matrix
ppectral problems of the form

j — VY +P/xt)’§0' (9.1)

which are ccmnected with Gelfand-Dikij problem (1s1) (with the
exception of the problem (2.1),{2.2))

1s The first problem is the spectral problem (9.1) with

0...0 Bt
4 /20 0 P

R 0
/“\z ,P= (9.2)

W U

N 8. . i
where P_._..J . PM are matrices M x M and /2 *A *'--?“/?FO
This problem is obtained as a matrix 22, reduction [41] of the
general problem (9.1) and it was considered in Refs. 31,42,8,

18]. The general form of the nonlinear equations integrable by
(9.1)-(9.2) is [17] '

Qst) 5 S QUL (VoY) >

k=1 €=1
- ( tl"— X-a-)ﬁf—_f)t




where ‘*"ﬂP 1"2)0,5 S L‘: (:‘E" X, 2 LN

are certain matrix m\t.egrm-differential nparatnrﬂ and

_QM ":,L r_’f‘) are arbitrary functions meromorphic on A . The
equations (9.3) contain the two-dimensional abelian (M = 1)
and nonabelian (M >1) Toda lattice equations [41, 42 as a
particular case Q === 0O, Qv-; @,?‘)""f EE]

All the equations (9.3) are Hamiltonian one with respect
to the infinite set of Poigson brackets { fn (J'Z *.{,IE’:;‘
where [’lEJ

(9.4)

(gL Jet(3Z.

i ki ké‘u

end matrix cpera'ﬁcr @ acts as :E‘ollmrs
Dy = ~d,40 + Lk[ﬂxﬁf)“‘-—z 3(;/’”) ]"
2 F[%(IJ, 17_, = [H,(x) a{[u’* ;VLZ % '7]

At N = 3, M = 1 see also Ref. [BJ.

The connection between the problem (9.1)=(9.2) and Gel-
fand-Dikij problem (1.1) is given by Miura type transformation
which ig defined from the relation [7-9, 43]

0 r Vs 0" r... +Yd +U =(0-P)O-R.)...0-B)5.5

And what 18 more the spectral problems (9.1)-(9.2) and
(2.1)=(2.2) are gsuge equivalent [41] . So the equations inte-
grable by‘the problems (9.1)=(9.2) and (2.1)~(2+2) namely the
equatione (9+3) and (5.5) with the same functions Qg (/l, )
are ga'uge equivalent. In particular, two-dimensional nonabeli-
an Toda lattice equatione are gauge equivalent to equation

(5.5) at Q ='..-=_Q_,2= 0/ Q,V—f ﬂu:({_‘f)_: g 1e8s tO

B

Lfg‘.g=zﬁ._z V e The familieg of Poisson brackets (9.4)
and (T7.32) convert one into another under Miura transformation
(9.5) and what is more this transformation is s canonicsal one

hs].

2. Second spectral problem connected with Gelfand-Diki]
problem is the problem (%9.1) where

1 00...0°) /9 Qx-aQﬂ_;_HoiQiqa'ﬁ
0‘}10- @ © Q"’"QQ , =
A#.- o s ek P=Q= Q OJ‘“'*Q;CS; (9.6)
?ﬂi} \QMQ#-g. " thng

where ? BﬁCﬁ 2% and Qq, aiit Qa,_., are matrices M x M.
This spectral pro‘nlam is nhtsined ag a result of Z reduction
too [41]

The problem (9.1),(9+6) (up to change P—>AL ) eana 1ts
relation to (1.1) have been studied in Refs. [9,44]. In the
AKNS-technique framework the problem (9.1),(9.6) has been con=-
sldered in Refs. [13,19] : the general form of the integrable
equatione and infinite family of Hamiltonian structures anslo-
gous to (9+3),(9.4) have been found. :

The problems (9.1),(9.2) and (9.1),(9:.6) are ultimately
connected. Indeed a simple gauge tranaformation Y- A ’#’f
P — BPB™ where By = g4 4

(4 K= £..., M) convert the problem (9.1),(9.2) into the
problem (9.1) (9.6) [41,18. So the equations integrable by
(941),(9.6) are gauge equivalent to the equations (9.3) integ-
rable by (9+1),(9.2) and therefore to the equations (5.5) in-
tegrable by Gelfand-Dikij problem (1.1).

3. Third problem is (9.1) where

=i



B [0 Qrz 0us..0,9,Q, |

AL R g 000 Qi il )

A: IP: 3 1 : 7
¥ ol b 5 o 0 et

| g AT L
lo 0 - 471 AT, .,@-.xm,o,@z}
- : @ O “'a(’*’--"fa}-‘l;ﬂ

where Q =£cc}c§%7‘f—-£:__. Spectral problem (9.1),(9.7) 1s obtai-
ned ss a result of 7, reduction of the general problem (9.1)
{18,1@] s One can find the general form of the equation (ana-
logoua to (’9:3}) integrable by (%2:1),(9.7) and infinite family
of corregponding Hemiltonian structures EIE-,‘I‘J]. '

The connection between (9.1),(9.7) and Gelfand-Dikij pro-
blem is due to the fact that % (N~th component of the m-:ilunm
yr in (9.1)) satiefies to the equation (1.1) where coeffici-
ents If’;_,...; Iﬁ’;z are related with @, ..., (?,1-'-:.! by formulas

[‘E*WJ_ : L s
> (V)P ), =0 (t=2.., %) &

A=

v #) # i
where /-'3('* i ———a/D( .,«.-’D(}sz 3 PH:"-ENM

(£ = 031525¢v2)s The relationa (9.8) is readily solved both
with respect to quantities Qq,,.._, @y.,g and qusntities

. %‘;"'; V;"’a .

If one perform the tramsition f@kf ——’r{ Vg-f in the

equationsg integrable by (9.1),(9.7) then one obtain the equa-
tions (5.5).

4» A1l three problems coneidered above ars equivalent
from the point of view of Gelfand-Diki] spectral problem: any
informetion about nonlinear equetions comnected with (1.1)
which 1t is poseible to obiein with the use of one of thepe
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problems can be obtained with the use of the other problems
too.

From thie point of view the approach considered in the
present paper seems to be preferable because it sllows us to
gtudy the nonlinear eguations connected with Gelfand-Diki]
problem (1.1) directly in the terms oF V;; Z;..., nT/,,f-g without
introducing emy auxiliary quantities end consiructionse

Let us note that recursion operator (pf the type I_‘,T} for
Gelfand-Dikij problem (1.1) has been also calculated by a
completely snother teclmigue in Refs. EI-,E] o In the explicit
examples at M = 1 and ¥ = 3,4 the recursion operators given
in {4,6] look like the operator /. *(see formulas (8.11) and
(B.16)=(B:17)« The absent of exact coincidence of this opera-
torg is due to differamt choice of basis of independent quanti-
ties. :

The results of the present paper can be generalized to
the Gelfand-Dikij speetrsl problem with [y =0 and to
the case {m Ve(zt)# O F=01,..., MZ) .« The reduction
problem can be also analyeed.
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