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Abatract

A falrly general vhenomenon of the modulation diffusion
in a many-dimensional nonlinear oscillator system is cenonstra-
ted numerically and treated analyticelly using a simnle moedel
of two weakly coupled nonlinear oscillators one of which iz
driven by a guasiperiodic frequency modulated perturbation. Tie
modulation splits up the drivﬁng resonance into a multi le:
which forms, wnder appropriate conditions, a narrow stochastic
layer. A far-reaching diffusion is spreading along this layer
due to the coupling between cacillators.

The modulation diffusion is similer in mecheniem tc the
Arold diffusion elonz the stochastic layer of a single nonline-
ar resconancc. Both are comrnarable in rate and exnected to e
dengercus for the motion stability of heavy particles
ding beam facilities.
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1. Introduction

As is well established by now the behaviour of classical
(non-quantal) dynamical systems may exhibit, under appropriate
conditions, a broad variety of statistical nroperties up to the
true randormess (see, e.g. Refs. f1_5i)- In the latter limiting
cagse the motion admits a simple statistical description, and
ig essentially the relexation to the microcanonical distributi-
on, for a cloged (conservative) system, or some unbounded dif-
fusion in phace space for the Hamiltonian system under an ex-
ternal regular perturbation. This sort of intrinsic stochasti-
city may be contrasted with the opposiie limiting case of dyna-
mical evolution - the gquasiperiodic (regular) motion - whose
structure is aleo fairly simple.

In practical applications, however, one encounters, as a
rule, a much more complicated intermediate situation of the
so-called divided phase snace /5/ which is generally a highly
intricate mosaic of regions with both the regular as well as
stochasgtic motions. A striking exaomple is the so=-called Arnold
diffusion which propagates over an everywhere dense getl of very
narrow stochastic layers of rdonlinear resonances (Figs 1). This
pecuii;» example of a subtle Hemiltonian dynamics was already
discussed at one of the previous International Conference on
Tonlinear Oscillations /6/ (see also Refs. /5,10,11/.

Here we are going to discuss another diffusion mechani sm
in a many-dimensional oscillator system /T,8/ which has been
called the modulation diffusion, and which is somewhat similar
to the Arnold diffusion. Particularly, both require more than
two degrees of freedom from topological arguments. The prineci-
pal difference between the two mechenisms lies in the nature of
gtochagtic layers supporting the diffusion. In case of Arnold
diffusion the layers are formed on place of the unperturbed se-
paratrices of nonlinear resonances (Fig. 1) and, typically, are
exponentially narrow but inherent, or universal in that they
persigt under arbitrarily wesk perturbation /5,97 ¢

The modulation stochastic layer, on the other hand, is the
pegult of resonance overlap within a multiplet produced by any
low frequency modulation in the system, either internal or



external. The layer width depends in this case not so much on
the perturbation but rather on the modulation factor and is
typically much broader as compared to a separatrix stochastic
layer (Fig. 1). On the other hand, a finite perturbation is
now required to provide the nverlﬂp of multiplet resonences.
The rate of diffusion within a layer turns out to be comparab-
le in both cases, yet due to a subatentially bigger width of
modulation stochastic layers the latter seem to be much more
dangerouss

Both the modulation as well as Arnold diffusion may olay
an important role in some applications. to the dynamical sys-
tems with negligible dissipation. An important exemple, which
is actually the main motivation for the present work, is the
problem of particle motion stability in a storage ring of the
proton-antiproton colliding beam facility, a huge project which
is sufficiently expensive to justify extensive studies of even
such peculiar and subtle effects as the Arnold and modulation
diffusion.

2. Motion spectrum in a modulation
~ stochastic layer '

The spectral properties of motion in a stochastic layer
is the central problem in.evaluation of the diffusion rate as
we shall see below. For a sufficiently narrow separatrix sto-
chastic layer (AW, << AW, see Fig. 1) this problem turns out
to be suprisingly simple since the motion-within such a layer
is close to that along the unperturbed. separatrix. Yet, for a
modulation stochastic layer that simplification is no longer
the case, and we are confronted with an interesting problem in

nonlinear dynamics.

We have gtudied into this problem /8/ via numerical simu-
lation on a simple model specified by the Hamiltonian:

Hlpsp,2)= L5+ k- Cos(p+ X Gosagt)  (2um

Here ﬂﬂﬂ is the modulation frequency while modulation factor
J.., determineg effective number of lines in the multiplet.

Under condition (see Refs. /5,12/):
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‘4:4"" 2.5 *‘33,'*7,""“@; >4 (2.2)

where S is the resonance overlap parameter, a solid stochas-
tic component, or modulation stochastic layer, of width
Zaw s LA,y (S A) is formed within the multiplet.
For diffusion in the layer to be fast one more condition has
to be met /12/
j £
Vi L I S M (2.3)

The physical meaning of this condition relates to a different
representation of the perturbation in Eqs. (2.1), namely, we
may consider not a multiplet of stationary resonances S;E‘: f: =
= m MM (I:! integer) but rathfr a single slowly moving
regonance o = Gy fﬁ}:lwﬂus‘b& wﬁt with phaee oscilla=~
tion frequency .ﬂ.qaﬁ'\/,F. Then multiple crossing of this reso-
nence takes place, and for diffusion to be fast the crossing
needs to be fast also which depends on dimenpionless speed of
crasuing-v¢ », In case of the plow crossing (V<4) the diffu-
gion rate dréps rapidly with V, and the time interval Z':p re-
guired for trajectory to reach amcross the layer (the layer
f.f:.ll-up ti}te} Eecomés too large. Normally (V> 1 ),

Z, nlaw) /k* 112/

We congider now an auxiliary dynamical variably Z repre-
senting snother degree of freedom and obeying the evolution
equation

z=€Sen(p- i) (2.4)
where jﬂ(fj is determined by the motion of gystem (2.1);
£ 18 a perturbation parameter and <& the frequency detune
between the two degrees of freedom. For a remdom (%), due
to stochastic motion in the layer, the varieble Z(#/ des-
c¢ribes slso a random procesgs with the diffusion rate

2 =
(Az) S # 127
D(w) = lim E il az)= : )= wt)dt (2.5
Dlw)=dm—; (az), aasm(m} wt)
Wote that ﬂ(ﬁ-’) is proportional to a Fourier component of
the correlation function for Sin (p(%) .
A numerical example of the dependence .D(GJ) within s
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Tairly big range of almost 30 ”J orders of magnitude is
showm in Fige 2 in dimonsionless variables @&/4@

and DE-‘:' D-AW /E£ « There are wo gualitatively diffe-
rent diffusion regione:

i) a resonance "alateau" (.'Cs”ﬁdﬂ) with the highest and
mug;hlg,r conatant diffusion rate due to resgonance at l;oz [

( IQP! = )-MM-.'fithin the layer);

11) the "non-resonant® region (|WI|24awW of exnsonentially
slow diffusion. In the latter case the exact first order reso-
nence {ﬁ_—-—_ & ig never reached, and the diffusion 1ig caused
here by second order resonances due to the motion high frequen-
¢y "tail" in modulation stochastic layer. In many applications
that slow diffusion under a high frequency nerturbation can
be comnletely neclected, as follows also from the simple ave-
raging method (see, Gegey/13/)e Fig. 2 chows that the accura-
cy of this method is fairly high. However, we are concerned
here just with those exceptional cases when even such tiny
effects may be of importance.

The diffusion rate in question can be roughly described
by the expressions /8/:

D = T Imiajr z)lwf“ (2.6)
e Ins . —lazl-1)
ﬁ_”'e' ’ Jw] > AW

Phe constant rate (/2 ) on the pla*teau is readily obtained
from the normalization condition /8/

i 4
; W o~
( Do(2) 42 <2
- O

assuning that main contribution to I}R comes from the resonan-
ce domain P ¥ & . A more interesting second expression in
Eq. (2.6), shown in Fig. 2 by straight line, ie semlempirical.
The average humerical value of the factor in exponent <C(> =
= be21 £ 0.17 2 Q7 . liote, that the exsonent in Eg. (2.6)
is close to that for the Arrold diffupion if in the latter
case one understands AW as the width of the resonance in
frequency (see Fip. 1) that is the width of frequency band
occunied by the resonance.

The coefficient (£nS/g))in Eq. (2.6) has been obtained
srom the assumption that the ratelof correlation decay R (Z)
ig asymptotically proportional to the KS-entropy A in modula-
tion gtochastic layer Foon

R(t’)———re,‘a’; gchkzc-f’.&_&.,; ( 7?
T - OO /g
The last expression for k was well confirmed by numerical

experiments, and numericel velue of the factor c s 4/2
{see Ref. /8/ for details).

Ag geen in Fig. 2 the estimate (2.6) does agree with nu-
merical date in order of magnitude, although one may notice
that., besides big fluctuations, the true dependence D(w)
ig actually more complicated {(gee also Fig. 4 in Ref. /8/).

gince the dynamics of phase @ (¢) is very compliceted and
lergely wiknown (especielly at the layer edge, see Ref. /9/)
1% is very important to observe the diffusion in Z on &

" $ime-scale much in excees of the layer fill-up time sz (see

above, * is section)e Por date in Fig. 2 the ratio Z‘r',,,ff}; A 300

3 Humerical ggcmfguma

The main teclmical difficulty encountered in numerical
experiments was related to a very low diffusion rate to be com=
puted (see Fige 2). To suppress the "background" (mainly due %o
big oscillations of freguency o ¢ ) we spplied a speciel ave-
~aging of the diffusing quantity o (t}= Z(t) for Eq.(2.5)k

1
: g 7 ;
—— ﬂ.’_'_f- ;
‘U’(‘ﬁ.}—-ﬁ' 1;‘5 = S ot) %(TE‘: —T% : (3.1)
. : {:‘:“%
Here 'T' is the aversging period (typicelly 0,01 through 0.1 of
the total motion timef)emd g(¢) (1Z1€4) e normalized weigh-
ting function. In the simplest case of _9(@'} = 1/2 thaﬁ_mxmaﬂ_.-
cal techniques for computing a low diffusion rate was described

in detall in Refs. /5,11/. Since the guppreseion factor for en
oscillation in V(£) at frequemoy  , that is a relative de-

- T —



22 in amplitude of this crcillation a3 o regul t of avoro-
-ing, is oroportional to the Fourie: comnonent of Q.fTJ:, a
ciaotner 8«(1‘2‘) seams to be more preferable. G convinient ty-
ve of %{"'J , used in the present work, is 28 follovs

]

n 3

ale gimfl., ) [ An+3 £h+3) o B )
s gt =5 Zire \Zn+i Call

wrsulting in the f“u pnregelion Taoctor
h #el

STl ) ’I’)(Tj ~Z () -Sufelmc.o

Yere r’, jy opn carme ond Bsssel Tunctions, ragnpec tivelys

= 7eT1 ane, ond the last expression in E3. (2.3F @ives
cayrntotic beheviour of S £ wT > +hile in ihe
omosite 1irit (WT 4L tactor S & 1. The lat.er casu-
rea thai everasing ¢éocs not digtort the true diffucion - e
in determincd by & low frsju ency band 1mi$i/z‘ K4 /T .
~uriously, the ziproximete exprescions in Bocse (a2} and (G 3D
hols to the accurasy of s fow per cent even for M = e

“husz, o 'szooth! syevra-ine Goes sreatly imarave spopressi-

sn AT the bacisround although it increaseg, nt the szuz tTinz,
the boundary Tronuency of effis et sucmeession wl 2
The nuzerical data in FPig. 2 have been obtained using weizhiting
function {7.%) with MK = t. Residual baciground in this case
{3 lowest noints in Fige 25y ig determined by round-off crrovs

(56 bit mantissal.

Let us mention zlso that well above the background the
mepsured diffusion rate is only weakly dependent {within & fac-
tor of 2) on either averaging neriod or the total motion time.
2 keep using that check-up to be surs of a diffusive nature
of the motion.

Another peculiarity of our numerical technigues ig a sve-
eial procedure for numerical integration of motion equations
/6411/ which may be called a Hamiltonian, or canonical procedu-
re since, being approximate to the Hamiltonian equations, 1t
exactly conserves, nevertheless, the phase density, and decrea-
se, in this way, the accumulation of numerical errors.

o e

i

Tor initisl studies of the modul-tion diffusion we have
cho~en a cimpl:z model deasribed by the Hamiltonian

% 4 2
H= (B )+ (B + # 25 )~pux xgmex, Cos (U X:Sim @ t) (1)

The moiel .cepresents tso nonlinezar oseillators counled by &
anall lines» (in Force) nerturbetion vith pearameter /U-ﬁ-'-'l & -

{ @&; the oscillation amplitudes, & = 1,2) and driven by a :':'r:-
sueney modulaced ~=rturbation wiih the mean frequency .Q and
£ << CLf . Without modulation ( A = 0) ihe
dynemica of a ciosc model was siudied in gome getall in Befz.

[ y5,11/, nunly, La veapect to Arnold diffusion in the stoches-
tiz layer ol soupling resonance @), = &g ( @, = ﬁﬂr;_
(/33‘: 0.85) are the unnerturbed frequencics ( M=E=0 })s Here
we sonrider a different nroblem, namely, diffusion in a mocdula-
tion gtozhactic layer of driving resonsance Q.Jf: <l .

a gmall naraaeter

The lmne“tu:*hed motion is described by (see, e.g., Ref./5/MN
t’t) Cos[(2q+1)wy; z&?
z » . (os 6;’_ )
g =0 23

The driving perturbation (€ ) results in formation of a modula-
tion stochastic layer with a short fill-up time provided (compe
I NEw {?-2} Eﬂd [E-B]:

~s o 3
KM‘VT‘ awg }i

(443)

£

2 @, w YA

VoS, vt g sl 5
Ve X,

The coupling term (m ) leads then to a diffusion along the

driving resonance 5

L

Eveluation ofsthis diffusion rate in @, (or ;) can be
performed (sce Ref. /8/) ueing the equation



- T d ! j [ d %
mi-= I‘E'a%}_: ﬁé‘/ﬂ%: SG'H- (ﬂ,'mxf) (4.4)

where we have set, approximately, % ~ Cdg'ﬁ , taken only the
first term in series (4.2) for Xg (see below) and neglected
the nonresonant term S&H— (ﬂ,-}-&.}_ﬂﬁ). Now, if we put

6~ an~.!~.+ 0 the latter Eq. (4.4) becomes of the form of

Eq. (2.4) with the detune €O = Wg— &, while ga(zf,) is determi-
ned by the motion in mcdulation stochastic lgyer aroundé reso-
nance Cd,,:..Q.. Provided /u ia sufficiently small

{/M-({ E/ﬁ.'._z } the latter motion is nearly independent from
the diffusion in mi, and we apply the results of Section 2
(see Eq. (2.6)) to arrive at

L B b N
D ¥ ﬁ(%) ey
= A _ Gy 2,
,&EZ.&_;.(E_L)% ézﬂ*h%@ ‘&T) i]
16 Nw, \og
where the superscript indicates that only the firat term in
Eq. (4.2) is kept.

(4.5)

3 ;m-r'uil:’"lmﬁ

The diffusion along resonance GJ, = i]_driveh by the cou=
pling can be regarded also as the "sgtochasticity pumping" from
one degree of freedom into another. That graphic picture of the
diffusion in a stochastic layer has been developed in Ref. /104
and had been mentioned briefly in Ref. /14/+ The so-called
wthick layer diffusion" studied in Ref. /10/ ie similar in
mechanism to the moduletion diffusion on the plateau (firset
expression in Eq. (4:5)).

An example of the dependence Dw (U,;/ﬁ-{z) as revealed
by a series of preliminary numerical experiments ls shown

in Pig. 3 (circles). The first 3 numerical poinis do resemble
the exponential dependence in Eq. (4.5)e Yet, for a larger

¢, / @Wg the diffusion rate behaves in a much more complica-
ted way. We have guessed that it can be explained by the influ-
ence of higher coupling resonances (G)=mwg,; M= 29+ 4 )
corresponding to harmonics of the unperturbed motion (4.2) even

10

e i

though they appean at the first glance, negligible.

The diffusion rate caused by mr-th harmonic is readily
obtained from Egse. (4.2) and (4.5)
‘.D{.HJ(&)= D[’JJ(C‘J" )* hf’]4 (4‘5}
Wy \ Qg Wy \mg E.Sm-i
Assuming the effect of different coupling resonances to be
independent and summing up :D::'J we arrive at the theoreti-
cal dependence Du2_<m-1/‘m£) plotted in Fig. 3 by solid
line. The first 3 resonances are clearly seen with their
plateaus and exponential "taile". Accordance between theory
and numerical data remainsg fairly good un to i-.J.,/ﬁJg ﬁg
and still persists, in order of magnitude, even up to
@,/ Wy 2 {5 « Here, apparently, the approximation
X Ay Cos e » used above, does ﬂl.'_; longer hold since
Ma, Ag L 4 GJ,) e
at7s = S (@) 0
The nature of a would-be platemm at (ﬂdffwi)ﬂfremai.nﬂ thus
far unknowmn, and requires further studies. Let us mention,
however, that in this region the measured diffusion rate off
the layer {&J,I—-Q ~ ‘3')"“1\1 ') drops by, et least, 4 or-
ders of magnitude. It would mean that the background lewvel is
much lower ag compared to the diffugion rate even at
(Wi /wg) > 45 . For a typicel éa. = 10° the ratio
Zf,,,/ o oone 3018 fairly big (see Section 2), and over the
whole range 1 € (@,/@Wg)< 24 the diffusion rate is nearly
independent (within a factor of 2) on either ']’ or ?’f,,' e On
the other hand, the change of C-Jf/mz due to diffusion is

legs than 0.05 for ?fm= 1DE’, go Fige. 3 represents a truely
local dependence ) (@,/a),)

In concluasion we would like to emphasize importance of
the modulation diffusion for the dynamice of many-dimensional
Hamiltonien systems.
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Fig. 3. An example of modulation diffusion in model (4.1): E..H.nu.mm are numerical data;
solid line shows the theory (4.5,6); @y = 0.2; = 107%: £ = 10=9; JL = 0.169;

X = 10; @y = 0.002; = 10058 % 3.5 K, 230 Vs T = 10%; = 4 (3.2).
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