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DESCRIPTION OF ROTATIONAL EXITATIONS
ODD-MASS NUCLEI BY THE PROJECTION METHOD
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ON THE DESCRIPTION OF ROTATIONAL EXITATIONS
IN ODD-MASS NUCLEI BY THE PROJECTION METHOD

V.V« Mazepus

Institute of Nuclear Fhysics
‘630090, Novosibirsk 90, USSR

Abstract

The projection onto the eigenspace of the angular momen-—
tum operator is carried out for well=deformed odd-mass nuclel,
the space of trial wavefunctions being more extensive than that
of the usual projection approach. This projection method 1is
shown to lead to the standard particle-plus-rotor model but not

to the cranking model. The comparison with the approximate pro-
jection method is made.



Tt

Ihera are f:wn main modala for the deaaript:.on of rnt&tiu—
inal bands in well-deformed odd-mass nuclei. The first one, the
'selfconsistent cranking medel (CM), seems to reproduce the pro=
perties of odd-mass nuclei sufficiently well[ IJ , but because
'of the semiclassical character its applicability to small angu-
'lar momenta is still open to discussione. The other one is the
particle—plus-rotor model (FRM) [2] « It is generally accepted
[2, 3] to be able %o reproduce Coriolis-distorted bands only if
Etha strength of the Coriolis interaction is comsiderably reduced.

Several years ago an attempt was made to substantiate the
CM within the framework of the approximate projection method
{r, 4], vut it should be noted that this method itself must be
first substantiated. On the other.hand, the PRM has been proved
to be a correct solution at not too large angular momenta in a

simple microscopic model [ 5] , whereas the CM is mot valid in
this cases -

In the preasent paper the projection onto the eiggnspane of

- the angular momentum operator (T) is carried out for well-deform-
ed nuclei at not too large J, the space of trial states being
more extensive than that of the usual projection approach. It -
will be shown that this improved projection method leads to the
‘standard FBM but not to the CM. Moreover, the approximate pro-

Jection method [I] will be found to diaagree with the results
of the consistent projection.

I. The Projection Method

I start from the variational principle {sea Ref. [1] )

-g 2 <€P'|HPTF¢P>
3 » &= <P PY P>

(IfI)

:tharg o
Pl =A; zn—-) {do D@ R@) |

ST (I.2)
R(—D..\):'eb Ee‘.{'ﬂ SELF'E




DI, (2) = <TKIREDITK> , 0= {4p3),
and 'gJ. does not include the normalization coefficient AT'

Following Refse [I, E:] the trial functions |®)» are re-
quired to fulfil the gymme try condition

; A
E'WI‘ICP>=EC—}T ks . (I.3)

which is analogous to the gymmetrization of the Bohr—Mottelson
wavefunction of an odd-mass nucleus [2] o

The condition (Ie3) allows one Lo move the limits of integ-
ration nverﬁ in Bqe (Is2):

i ¢ /
{CPlHPT]<P>=AT§¢—}“ dadye kel (Te)
? dp Binpl 4,/ (O<PIHREIP>,
where by definition ; 2
i Kad-1K T
DI )= T d P

I+ should be noted that definition (I.2) of the eigenfunctions
of the symmetric top DEK’ differs from that of Refs. [I, 4—] .

2, Trial wavefunctions

If the projection method is applied to even-mass nuclei,
a correct result is given by the trial wavefunctions of the
Hartree-Fock-Bogolyubov-type
+ gt
o ik
L B %
leveny = € o> (2¢I)

( summation over indices repeated),

where d\‘}: is the operator of the quasiparticle creation in a
Nilsson state |4 and |O) is the quasiparticle vacuum. Within
the approximation of well-deformed nucleus the antisymmetric
patrix djq defined by Eqe (I.I) coincides with that of the
CM DI-__] . In the first order perturbation ﬁheor:r after neglect-

4

ing the variation of the selfconsistent potentials due to the
perturbation it takes the form

(L) w = VI
E1+E: ik Qo !

where E = 1‘51‘1—5" is the quasiparticle energy, @a is the
cranking moment of inertia [II, IE] and {Tiﬂ‘]ﬂ is defined by

(2e2)

dy =W

the quasiparticle representation of the angular momentum opera=
tors: '

+ 20 i o 20 %
Teaps i Lydy + (T }ud\ftﬂ(h Vi yely 5Tz
A= XY
( see Appendix A, Egs. (AeI9 = A.2I) )e

In the case of odd particle number one usually sets
I
lmclul?=£ioqe A ey (2.4

with =f,_, and :l 43 varied [4] « Under certain assumptions one
obtains for d 23 & solution of the Eqs (2+2)=type in which the
quantity () 1s defined by a more complicated consistency con-.

aition[ 7] » Such a solution means the odd-mass system fo robave

with the classical angular frequency @ , and it is quite pro-
bably that just the trial functions (2¢4) impose the semi-class-—
jcal behaviour on the system. Thus a question arises whether

the solution of the EqQe (2s4)-kind is stable with resgpect to
any extension of the trial state space, or sSome extension of

that changes the solution qualitatively. It will be seen that

Just the gecond case takes place if the projection method is
‘used. :

1 assume the trial state space to consis® of the wave-
functions : :

12> = & (e

y4) are single partic:lé matrice:a.- It

bR N g
Q2 f‘sﬁ“"i”"‘l) '
where .&'}_1‘1 {(h=X

>
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then the wavefmnction (2.5) coincides with that of Eqe (2.4)s
Thus the trial space chosen contains all the states of the

Eqe (2e4)=-type. A physical sense of the wavefunctions (25)
consists in the fact that due to the quantum character of rota-
tion the angular frequency is no longer a c-numbers

Al
2y i — mS’Ax?ﬂ

So far as only the case of small angular momenta is inves-

tigated, the expansion in powers of DX in Eqg. (2.5) may be
made ¢

P> ={ Lflo> +g, L M o5 + 2 25 1oy cale

with

toal oty 2ok T
£12% = 2 - (PP (27
where the notation
rl=>aib
Qa -—E} 41 Pg
is used.

. ; ;

It can be shown that the vectors Z : x are excluded from
‘g:b}' means of Eqgs. (2.7), themfore the indapendent trial pe~
rameters in Eq. (2.6) are :fi 5 gi and 'Hﬂ‘ .

To aatiﬁfy the condition (I.3) it should be assumed that

E.m'h‘ H]" E. = & f.\ (no summation over )\ )

e‘"‘*:if = L{':')I‘%{  (248)
e xg) = G g’*;

E-x =1, g =~4 and h are the single particle angv*—
lar momentum matricea:

6

N7 E- (dy)1 “1“:
with 0.+ being the usual fermion-creation operators (for the

?cunnection of h i :l'“ and Iﬂ‘ see Appendix A).

Besides it is assumed that matrices ,hﬂ have the transi-
tions with AK = :1 onlys This assumption as well as Egqs.(2.8)
will be shown to be selfconsistent and does not require any
additional Lagrange multipliers.

3. Approximations

In orddr to perform all calculatim analytically, the
Hamiltonian is set to be 'the ordinary WSl QY+PP-model. In the
representation of quasiparticles defined for the nearest even=
mass nucleus it has the form

' hoe Foritat
H: ZE:[J;‘IJ!'}' Hi 3‘1‘0{ -l 3 q+L C.
(3.I)
+ 4t |
t HH hydgdzdythe.t H113‘r "{1& Ay ol

ﬁra E i_-yg +A" is the quasiparticle energy, £ is the Nils-
son deformed field and A Bstends for a gap parameter. The
quantitiaa R4 , M3 |, H** have been listed in Appendix A.

“To obtain E it is necessary to calculate the expecta-

tion values <¢P|HR{_~:J_)[9> and <P | R (f)|P> for the state
(2.6)s Thia highly difficult problem will be solved approxi-
inately with the following fairly strong asgsumptions made:

(1) the nucleus is & well deformed ome snd therefore
Z w8
| <0|T3lop =<0\ Tflo> = B B4,
where |O> is the quasiparticle vacuum (o{ilD):U) §
(ii) the total angular momentum 18 not too large:
J : :
@ << Ei ~ A 3
(iii) the energy difference between Hilsaon levels con-
nected by the angular momentum matrices Jl is small comparad

7




to A (it is the most interesting case of the strong Coriolis
mixing): :

(E{-E;) dyg K Az 4
E.=E+E! & Er~A. E,%E (3.2)
L it | *
In fact I assume

E ~ L NE; a cl J v

£ e h .

S | (343)

The quantﬂ;tj’ < HR()>is calculated up to terms of the

order c:f @, inclusive, and < R(®)>up to terms of the order
of D71, Wnile calculating the expectation values certain sums
of the products of {Jh)ﬂ. arise. The order of these sums is
defined by their coherence. For instance,

2w 10 2\, Can 214 2
PACEPNCVRCUNEIAR] b1 (CroM il REE (300

|Z£(E* )Umufj ), (7 )@fJE)ﬁr’ <
K %1’1(5&)!(1! )u . 3' : E:::,Egi*%j (3+5)

Some of the arising coherent sums are expressed in terms
of the inertial parameter of Peierls and Yoccoz, Rouhanine jad
and Yoccoz and Onishi (Refs. [ 8, 9, I0])

'__ {E‘IT&]G‘}
<H>» =<o|H
®X <ol Ty (H-<H)le> Fmspliling.

In the Q@Pﬁmodel this parameter is d.éfined by the atatic
quadrupola moment of the even-mass nucleus:

@I 19&& ZE (73 (3:6)

where 3@ is the quadrupole = quadrupola aaupli:_xg congstant {aeé
Appendix A)e It is assumed (Refs [47] ) that

@1 "."@n i

etboe.

gp far as

Finally the sum

=5 (7Y (37)
A2 E;f_'i

arises in intermediste calculations. It is estimated as

(3.8)
1 o &t %@o 9

20 2 '
@a s 4 Z | x)tz' : (5.9)
By

4. Caleulation of <HR(Q)>. and <R2)>

It is convenient to denote
i X g 20 \K
®j‘_ “4?1- Fu(jx)ﬂ
X L
X Lo %
By =23 Egg pyg (T ey
X 4
= % |f“11,l
The estimations for these sums are

®1N®£N@0 ) ﬂi'\'% " 'HINHN*E .

If one designates (see Egs (2+6) )

12> = [E> +|&> +12ZD +.,, (42)

(4.I)

then

<PIR(DIP> = CFIR|FD +<GIR|Ey+ Conj.
(4e3)

+ <2|RIFD + Conj, +<6IR[&> .




Eq. (A+I9) yields
e % | @y = |FNS + 160> I ZW>+..,

24 (05105 + RO LS 05 + 2L DN (et

with
¥y Ly S
d=(e" ), , Pm=e ."")”(gi‘&m,,ajﬁha»),

RS (1R a
21 ((n=e 21{[2;16_52? +{§Ai‘i -1-\‘5'}' 21 J'glhﬂ" Gid/

i a3y el S ]
where )\ is determined according to X= 5 and E'_,x .

The operation of ~E.ﬁ 4 on the auasiparticle vacuum and
the quasiparticle operators is defined as follows:

] J- -: J..-'-
e*F .!Oqe iad |

s | (4+6)
with
U= 8y +ip(Ty ), ~ ﬁ'2'(:l‘ n (1., (4e7)
. +£?2(IE}43(I?)3¢+O(P3J .
and
.-u; = K :_]'?-ﬂ_)*__ 2., 11 Lo0\ %
2. F’( Y 24 F'(Ig)H(T& )?.z s
BT, (T4 +0(6).
Then :
i an o ydid %
where

Cup=ip O PO 0,0; o) O, hio

I0

- _.E.lﬁ 0

Np=e gﬁ(j+ﬁ'ﬁﬁ¢+.,,), ¢ 5 s, |
6" includes uncoherent sums and is of the order of i,

Eqs. (4.I0-I1) are derived by iterating equations for d and N

obtained by means of differentiation of Eq. (4+9) with respect

to ﬁ
Taking into account the axiality of the prnblam one can
write down for the most coherent terms

o Pis My o 5 s %E?lﬂ 9, . (#012)
Using Eqs. (4.3-I2) one obtains
<PIRE)®P> = N(P){(iﬂﬁ I eado+ipf T
+ Hﬁ[ﬂ@‘—?—n + L Leagm8, +f-g’m¥m &
ol (il . 1y (4e13)
+{07494 Py, +§ 0Ty & (g 1"3”&’\(-03 _
9“( “4)4 m% 90, +1 (—-t)z% ap' g

+#¥ntn Pé

where

4 {—04(3’)*52’=ff (wt)fid)‘, ﬁ-.t)lf ) _241&0 { ¥
etcs} EIE.:].'_Q = T“) (Jﬂ)g iy ZI (]“10 '.13(3-10)32 £

Eqe (4+13) contains all the terms up to the order of 3 .
For the eatimation of these terms it should be noted that due
to the multiplier N( p) the integration over B leads to ad-
ditional smallnesses comnected with powers of ﬁ 3

o " 3 4
g, popiag, p«ﬁwﬁiz

Ir

etce




The evaluation of < HR(L)> as well as (4+I3) requires
highly cumbersome calculations but is sufficiently triviale
Using equalities of Appendix B one gets (H =H-E):

<RIHRI®> = Jp{ T (1L esa)ipt £ ok
AT L L A 'L
+ Lo +EL T, T L0
+{engo] far F Gl Bob] P 74]
el ety

+ . -l 2
*35<-@3§'¥c1)[%‘azﬁf+%,ﬂ% 1] | e

+ T

+ g:"{.-i) gha)[j:i_ @1.. % Eliﬁiﬁ'{i P)zhi%r
SR - % i * .

LD @Bt (P B
QM T T S‘& 0y @i]

4%
* iy iy B2 X
+z’°‘(—ot)4(x)[%§i‘+_‘.ijﬂ ﬁf@fg‘}ﬁ+ ‘—;-} e, ®f 15]}
)

+ ' B :
+e0z o] D ¢+ s ﬁﬁﬁiﬁ + ‘—f’%}f%ﬂ

where as well as @ stands for an uncoherent combination
and is of the order of 1- :

5, Integration over the Euler angles

Let us set the normalization multiplier A in Eqe (I.4)
to be equal to ¥%/8w2. In this case

12

e | g
<@ |P7|@p = ¥ 3 [ disy grike ""*&@P[anp&;@)@mm
= “3 (51)
=4 +0(%)

( analogously for <4 B PTP> ).

The integration over o and ¥ is not a problem, as the
dependence of 4{&}.}3}‘{@, 2 W o) on o 1is quite simple
(Egse (4+5) )+ So far as the quantities < ("f) R{) contain
the rapidly decreasing factor J?‘ (f) one may replace the integ-
pation limits in the integrals over p by too and expand

3ing and d&,{p} in powers of B :

43, (B=<3 (& PHITED =8, B HITD +... . (5:2)

: id T
To obtain the terms of the order of in <P"> one should

cetain the powers of B up to 2 while for the terms of the
order of 9_1 in <H’PT} one needs the powers of g up to 4.

Now the integration is trivial. Denoting

gfi} = gT tig'ﬁ (5*3)
and using the conditions (2.7=8) one gets

- T+4 o TS :
<P PT| P> 21+ % i %_gj +:!1£_{ ;ma.-i'}-,;;fazﬂ:f + Con,

+_ = + 2.1 o™ .
- LTl r &f m + conj
Bk dox TULLE (89 Loet)
8 e B g )
e, 1 L g
n @I+ 1'1' @ @xqﬂ":}z{

@
-%‘.If./m;;afﬁ + con],

LT BN

{P\H'P7IPY

13




I

B T + o
(BT P PP
- @ty 2n:% . Q0 _ 0}t (545)

@x 28y 43
(%8 75 (8 6)- "(ﬂim@*)j

e
M%}ﬁ“
HH':'

with

- * - =
721, = (T (TNt A0 s (T35 5 A= %d5
IE:I?i[I; y  Olayiad

In Bgse (5¢4=5) the normalization

{J"{ =1 (546)

is used.
Omitting unessential additive constants cne obtains from
Eq_s- (5.4‘5)

6 M zerf(mifﬁﬂ‘M){
+i~¥*mﬂ£— ¢ {’fﬁi"a;(ﬁ“}:zﬁ +{E4
Ao T - Dol
43- g 4(8 - EYger
vy - Bain s 82 - L @ade)
- %(ﬂf@;) - g-’f‘@ (67+67)- é (ﬁi@iﬁ,ﬁj@tﬂ .

(57)
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6. Variation with respect to g and M
and the effective Hamiltonian

The variation of Eq. (S.?) with respect to 3'9'3 yields

3&? [‘.1'.@ T = (2_{'5&_,1)2-}- o (ﬂ +§1)2ﬁ,_ [’%4.25#)(@.,. @i)]
+3( 28 )(fﬁﬂﬂ-&éf& T =0,

As Eq. (2.6) includes 3 in its product with /14"" only, one
can normalize g arbitrarily. Let us set

tj@;( JC?HJ*J;*JE"L)f. (6+2)
Then due to Egs. (2.8)

S 1. pan
gfi_):_;é_}:-r _181‘-"‘14138"]

= '@% (f3et)-32-j -T2 ){

Thus the quantum angular frequency obtained by the minimi-
zation of the projected energy in the class of the trial
wavefunctions (2e5) is not a c-number but a matrix with an
essentially non-diagonal structure

(6.I)

(6:3)

It should be noted that within the approximations assumed the

angular frequency of the CM corresponds to averaging Eq. (6edt)1

W= é f*( T(T+1)-j2 _'_J‘f:)qf ;
¥

By varying Eg. (5.7) with respect to f—(r and taking into

account Egs. (4.I) and (6.2) one obtains

¥ =(:rg)ﬂ[%(ﬁrﬁ?)+z,‘g(®i+@:)-%:l LA {11

15



DT A g agh) b€,
=+ hfi;_[ﬂ(ﬁi+ﬂi) 'E:ej"f' @I]
35 i
= (j?)dﬁ,A i ( E}::Hzg (Eu“Ef+Ei) .

From the definitions (4.1I) and (6+5) a system of equations
for A and B arises, only one equation being independent by

virtue of Egs (3:6)?

B_..__.i : i (EI-'EI)

Thus i
us = Oxk 44 (T (6:7)

12

with some arbitrary Ae The quantity A cemnot be found from the
variational principle because 'g;r du;s not depend on it. As is
obvious from Eq. (6.7) the matrix Mj; contalns the transi-
tions with AK=1{ only, in accordance with the primary

assumptionse :
By j_ngerting Eg8e. {6-2} and (6‘?) into Eq."‘ Ls'?} one Eﬂts‘

AN e i

where ‘J-f‘T 18 the effective Hamiltonian of the odd-mags puclaus:

1‘3?:-1 = Ej_gﬂ + (%:' é'!- %)(Iia)“(]' :u)31+igﬁﬁi)u ?:

- L (hoa g T T -iatle ), (6.8)
T+~ () §
LT e

with g ik
—=F —11 - =
Rl , Bp=WMtuv,

( Uy and Wy, exe the coefficients of the Bogolyubov transforr
mationy see Appendix 1). In the derivation of Eqs (6e8) the

16

identity

O 2 &) )
413 32 .-ta '235_
has been useds.

= ;T; (no summation over the index 31)

By virtue of the conditions (3.2) the quantities E
determined by different ways are approximately equal:

DI mEaleal?

P’

K330) okl 25 1(7%), |2 £ sead)
x 12 {3 '
2 Z1C k220
Therefore .
LN e L
e 9 ® | < @,

and the second term in the right-hand part of Eq. (6.8) may be
neglected.

Thus '
& e S PO WV i e o
%{L o Eﬁin"’ iﬂo( Jf)ﬂgﬁ: "' _,:0'; ( Iml)*J:fJE ‘J‘f-

I ! : (6.10)
+ ]'f 1/1(3‘**1)‘}2*&5 ),u"‘ _’2% %ﬂ (Tﬁﬂ}-“;)ﬂ) ’
o

The unitary transformation EIP(EFJI) leaves the Hamiltonian
(6.I10) invariant. This is obvious if one chooses the Nilsson
wavefunctions [anﬁ, 2> , for which

o WAl
e T WA = LA N A2, (61I)

.as single particle states Ii} .

According to the conditions (28) one should select only those

eigenstates of the Hamiltonian (6+I0) for which

j e :,FJx:F’ ol (_,)3'-% :ﬁ (6+I2)
If one chooses as a basis the superpositions of the Nilsson

17



wavefunctions .
T=-14N %
|W#ngAK) =%(INH;A K> +6) 3 Wngh, K>) JK>0 (6413)

which satisfy the condition (6+12), one obtains from Eq. (6+10)
the ordinary form of the PRU-Hamiltonlan (see Refs. [2, 3] ):

e
{AK\‘;{ﬁaﬂ'K) E o + 75 2% (] JF)“LK Ak “ﬁﬂ,u
1 [J.fjihi) Kz] ,l‘l' ':LE“)T+ (]‘+i—){l MSI{,;%
(6eI4)

@ 1R == -ﬁcm)—n(m) ARAIMOED,

’
where Oy are the decoupling factors and o ot denote sets
of the Nilsson quantum numbers N nEA.

Thus the projection method in the class of the trial wave-
functions (2+5) leads to tha effective Hamiltonian coinciding

with that of the FHM.

'7, Comparison with other approaches

Let us restrict the trial space by that of the CM, l.e.

‘aggume

O =088 x _ (TX M2 i
a2 @95 g el o

Inserting Eqe (7.1) into Eq. (5.7) snd varying with respect Go
() one obtains:

AT )~ vig + 30H) ~d 3
@uw+£+jl1£ =£+ _T(TM) Jzﬂ";"" D~dadz :r 5

(7:R)

18

T(T'H} x Ja-“ i
g'-" 2 91( 5 t{E 'f *2 { (3214
E LT, 00, # ‘R, 1t
+ Tf‘ﬁ(ﬁ;!)—j’éﬂz);ﬁ’_(%_gwfw +@4 (7:3)
( -i)&lf ]ﬂﬁ Q"— _»[)w

The qualitative distimction of the effective Huiltun.i.aq;
correspnnding to Eqe (7¢3) from that of Eg. (6.I0) comsists in
‘the fact that Eq. (7+3) contains the unphysical inertial para~
meter 91 » However in virtue of the approximation (6.9) the
numerical difference is not large because @y is close to @,
(for the numerical estimation see Ref. ]:4] Je :

In Ref.[]:] an approximate formula for ﬁ was propoaedt

& =<y~ < <> | <(H -{H})‘_]‘! [

< ‘3-31:} < Tl} s

(:7e4)

: RN _ 72
43‘;)] + .2<T31>’° 4z [ﬁ(&i.)-(ﬁ) -(J‘x>:| ;

E'?l'.'.l:usnr authors assume this formula to be wvalid for the HFB-ia:ra-
functions. Within the approximations made use of in the present
'paper it follows from Eqs (7.4) that

6, =fEl+ {00t {10 - 3 Moo (2p 4,
+w[ﬁf’+ﬁ-f 3 -ff jﬂ-—@n“’] (7-5)
+ PRl L 1d-00] '

if the CM-wavefunctions are chosen as trial states.

9




The most ossencial differcace bLebtwsen Bgs. (7.3) and (7.5) con-
aiets in the fact that in plece of the corrsct terms

Tt 3 ACIME PN

Egs {7+5) contains
' 4 1 1
@I-{ ET}IT SEi (jw}qg( MJ ‘{i 2:@ L!P 1£)

: ahould be pointed out that non-quadratic Terms in Eg. (75)
do not agree with the general structure of Eg. {(I.1)s Also the

other differencies, though not so crucial, show Bas (7-4) to be
insufficiently correct.

1t is diffieult to indicate the cause of these distinc-
#ions as the detailed derivation of Eg. (7«4) in the odd case
i8 most likely still unpublisheds. The possible cause may con-
gist in the fact that as it is seen from Ref. [ 4] the approxi-
mate expression for <(PIHREV|P> was reatricted to the terms
of the order of B2 only while Eq. (4.I4) shows '!;ha naﬂeaaitﬁf
to take into account the terms of the order of ﬁ and }3

Also it should be natad that in contrast to the statement
of Ref. [I] Eq. (7.5) is not equivalent to the CM. The CM-egqua-

tions can be obtained from Eq. (7.4) only if the second term in
the right-hand part of EQqe. (7+4) is neglected. In this case

2qs (7+4) yields
— 3 o
-4 @0+ -3 +HEL-0f Tt (20

=ith the consistency condition

¥z g o
Y3+~ izf =f Txt + 0w,
These equations coincide with those of the CM at small angular
|Eﬂmtﬂ [?] e

20

Conclusion

The results of the present paper are reduced to three
statements:

(i) the approximate formula (7.4) for the "projected
energy” from Refs [I7] is inconsistent with the straightforward
calculation of '&I at small angular momenta and seems 1:0- be
incorrect in the odd case. Moreover it does not imply the CM=-
equations, in contradiction with Refs. [I] 3

(ii) the extension of the trial state space of the projec=—
tion method leads to the qualitative change of the resultss The
restriction of the trial wavefunctions to states of the Hartree—
Fock-Bogolyubov=type does not allow one to eliminate the unphy-
gical inertial parameter ﬁ}! 3

(iii) the straightforward calculation shows that at not
too large angular momenta the projection method leads to the
ordinary PRM equations, this result obtained for the class of
the trial wavefunctions to be more extensive than that of the
self-consistent CM.

It should be stressed, however, that the last statement
is based upon the calculations in which the prnjectiun of the
angular momentum but not of the particle number was carried oute.
0f course, this approach is not quite correct. Besides the
approximations (3.2=3) do not correspond entirely to the real
situation in the deformed odd-mass nuclei; also they obscure
the distinction between the realistic moment of inertia ﬂ%
and the unphysical inertial parameter @I ¢« On the other hand
in a simple model without pairing forces [ 5] the projection
method leads to the PRM which in this case is shown . to be an
exact solution at not too large angular momentas The quaatioh
is if the projection onto the eigenspace of the particle number
operator can lead to equations differing of those of the PRMb
To answer this question and support the conclusions of the pre-—
sent paper the simultaneous projection of the angular momentum
and the particle number should be performed and the approxima=
tion (3.2) be abandoned.
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RO Appendix 4
I would like to thank B.T-}. Belysev, V.F. Dmitriev,
VeBs Telitsyn and V.G. Zelevinsky for valuable dlscussions. The Hamiltonian of the QQ+PP-model is

H=T-GP"P -2 @LQ, , (AeI)

where

i +
0 %fﬂaiﬁi yi =§-ﬁ&i°‘1 5 Qf“éqr)izéiq‘ 5
}( =0,t4,t2, .

0§ is the operator of the creation of a fermion in a statel|d)

(the set of the states |4> forme the Nilsson deformed basis)

. iand tyy 1is the spherical single particle Hamiltonian mcde
! ‘from a chemical potentisl.

In the representation of quasiparticles comnected -ith ay
‘and {11 by the Bogolyubov transformation

ot = u, o + V3 4y , G
Qg = Uy dg - V5 &}
(the symbol "tilde™ denotes T-conjugation; |f}—-|1> 2
0F = —=Qy ).the Hamiltonian, pairing and quadrupole operators
ha*ra the :Eom
H= R Y oLk, + R vhoe + HYO it ell 1.

s o
"'Hixzq"{i“:z'* 4, +h.c. o 4 & ALl : (4.3)

P= P+P 1y +P ,a14++P Landi (4e4)

@r_ Ml +(Q )y &t 4 +(83), G + +(Q5),, dydy (A.5)

where

pe-Et P, Dol b, ch

' - a3

ke




8,77 @, @)= (Y Ber @l 340, (@Yt AT

=T~ G(Ig’lﬂﬁ.lpu_ll) m(ﬁﬁiEWﬂﬁ)ull)
Hf,; TH -G P(Pi+ 1‘:)+f>“‘Pﬂ+4§“°P 1

*Z[Q (QHJ +(Q )1{) + ﬂ)y(aﬂ)‘)z Q(@?)H{ﬁ;ﬂ)ﬂ] %

s =Tie-a[ PP 2P P
- [0, (@) Q) +2(Q( G, ]

- 11 o &
‘Tl 'E-t'lfﬁql -, ""'-tu_gﬂ_ 5 T 14 = 1'&11 ‘1{1 3

(A.8)

(A.9)

(A.I0)

(A.II)

Hlm -._GPMP?-' EE'_[Q )u(q,ﬁ') ( antisymmeover (I234) }j (A.I2)

1s 3y

e (Prp P - = (G0 (),

+(@ )Qi (&j" )1; ) ( antisymmeover (I23))
Hisy=-a(b2 e ot )

":E'((azrg}sq(9‘?)1:.*@;)11(Qﬂ)ﬁ Q) (). )ﬂ)

( entisymmeover (I2) and ( ?-ll-)) g

The matrix elements der are defined by

Sﬂ-.-{aia;} o [ AB) =AB+EBA

end obey the identities

Siz "%Ei" 17 = g&’z 3
%gﬁﬁg"_‘_f’f {or any ‘fi .
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(A-I3)

- (AeI4)

(AeI5)

The quantities {1’:’ end Y%  are connected with the Bogo-

lyubov coefficients U, and Vy

L — & . :
2= Wl F Y =W R, (A.I86)
If as usual
U S PTG (4017)
=, = =1/ E
U 'J.r.(“’ Ei) : V=141 g’j) >

where Ei is the Nilsson energy reckoned from a chemical po-'
tential, ' E = 511+ A* , A is a gap parameter,
then

2 A

— oy m——

T 3
& T APe £y

oL
G

whence neglecting the exchange terms one obtains
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H 427 Ei?u, 9 Hip=0. (A.IB)
Finally the anghlar momentum operator
-l
= e +
J= % (§ 12019
can be written in the term
e 3 + .
a5 Ef.&ziﬁ dydyg 4 : (A+I9)

" + 4 (2o
'_I“h_(:!' ) i“‘t +(J 41*,11'(31)&’{2"{1 (A.20)

where

iy & 20y o4}y :
(T ) 442542 5 th Do 1343‘11;. (amanib (4.21)




Apprendix B

Some useful identities for &:f : Qf and Jf' can be

sta‘bed-

5 By using the commutation J-+ 'Jx s d’j
ocne obtains '

(@32 5 .zv”aea fu ()

| (@M) "C)#(Q )ﬁ : Ey=EitEy
'ﬂ.ud

(eff), -'_Hﬂ Thae, (EE)E),
Starting from

@o = g(in ),1'1 1&-1
and substituting |

-?TEJ:I: ?q:.f}

it i eagy %o show that

(@) ()= PRV

- % (&;:).;g(‘-"fa =" %‘i@a S(ut1)

with €=%-Jxq

(BeI)

(Be2)

(B.3)

(B_mﬂ-h

(3-5#)

%‘ (@ﬁ‘:uﬂ;o 12 _____11;_5@0/‘ 9{/"2‘1)'

From Eq. (B.I) it follows

{:IK 2 oz —_— -
5 00 oz} - ‘41/”;:@ -

TR
with fi

D=2 Z(TM) (Iuﬂ _Z (T¥) (Izmz .

2%

(Be4a)

(Be5)

(Be&)

(Be7)
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