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THEORY OF CRYSTAL ORDER I. GENERAL FORMULATION
AID PRE-MELTING PHENOMENA

A.C.Mitug and AvZ.Patashinskii

Ingtitute of Nuclear Physics
630090, Novosibirsk 90, USSR

Abatracit

The crystallization is described as long-range ordering

of a local tensor order parameter. A model hamiltonian of
crystalline arrangement is proposed. Thermodynamics and elae-
tic properties of the gystem are examined in the vineinity of
the melting point rT; in mean-field approximation. The pre-
-melting anomalies are shown to exist and to be in a reasongb-
le agreement with experimentel dats.




1+ Crystal-order parameter

In this work the crystalline-ordering is described as
due to long-range correlations of a local order parameter

A(Z).

In traditional description, started by Landau,[1], the
particle density H{i?) plays the central role. The symmetry
chenge of the system from the rotation - translation group of
3-D space in liquid phase to the crystalline one is described
by Lendau theory: quadratic terms rﬂ|I¢CSEJ-'<'1}fin thermody-
namical potential {PI{EE} make the tranalational gymmet-
ry vanigh and fix the modulus of a wave=vector « The high-
er-order terme fix the star of 'E; vectors, deseribing the
crystalline symmetry. Such a treatment is possible if crystal-
lization is nearly a second-order phase transition (eeg. He> -
- see[E]}- This hierarchy of effects is broken when the jump
of order parameter at melting point 11 is not amell. It is
known from experiments that in case of crystallization of the
dense liquid the difference in local ordering between the 1i-
quid and the crystal is small.

In this work it is presumed that the space anisotropy of
atomg' positions, uniform in crystal, is the main difference
between ordered and disordered state. Thig fact can be formula-
ted in terms of the density-funciion PL{ﬁE), gtating that
atome form periodic structure (crystal lattice).

Let's introduce the field-parameter /\(55, describing
the aniantrogyﬁgf atoms' positions and of physicel characterigs-
tics at point X . The last one corresponds to a small volume
of the system, containing a few crystal cells.

These ideas were first introduced in theory of liquid
crystals (see, e.g. [3]}. The field parameter Q (fj s degcri-
bing orientational-ordering ig interpreted eitﬁﬁr as the field
of quadrupole moments of the system or as irreducible part of
suscebility ’x& -—%’LPS;‘? « It is supposed that the last
one containg tﬁe part due to anisotropic character of atomiec

arrengement.




The characteristic feature of the crystal that digtingu-
ighes it from the liquid is, as a rule, the exisgtence of an
anisotropic part in elastic constant tensor‘l‘ _ﬁ',Tha elas-
tic and space anigotropy are clogely related; the details are

examined in next paragraphs.

The location of atoms in a given volume is fully descri-
bed by means of multipole moments of the density function n(x),
which form a set of tensors. The higher multipole mo-
ments characterize the detalls of the relative arrangement
and keep changing due to thermal motion. Unlike the microsco-
pic description, the averaged (on atomic scales) one is given
in terms of the field parameter A(fj formed by a finite set
of multipole moments. The following arguments show that it is
sufficient and necessary to use the fourth-rank tensors. The
systems examined here are supposed to have the inversion cen-
ter. As a result all odd-rank tensors venigh. The second or-
der can't describe the existence of crystalline symmetry
e.gs in case of cubic symmetry it becomes igotropic tensor
Sa- (1.e. scelar). The anisotropy of elastic properties is
ogely related to the exigstence of the irreducible part
% 5 in elagtic copnstant ‘tensor.lg Sl Hence, the existen-
LAY A 3
ce of the average <’l¢ 5’>=¢f= (0 states the crystalline
character of the sys_teﬂn opposite to liquid in which
(';Lﬁ (r>=0, Nevertheless, the elastic anisoiropy can disap-
pea also in crystal-state (e.g. for NaCl at T = 690°K, [4].
Tn such a case other characteristics are to be treated. The i
"true" parameter A(?} describes the anisotropy of atoms' :
arrangement in other worde /\(E degeribes the directions
of local crystal-axes and characterizes the displacements of
atomag from the ideal lattice.

We introduce the parameter A(J?j ags a set of tensor
fields A{“}(f) with renk N € 4. The irreducible tensors ¥
of fourth- and second-rank are respongible for crystalline -
- and liquid crystal type of order, respectively.

2+« Effective hamiltonian of apace arrangement

Statistical mechanics of crystalline-order is given by
the pr 114 i o i

pmbablllt_‘{ density L\/{A(Dr..) of a given crystal-order
parameter JIJ configuration, ;

A} o0 oxp{~ HINGS /TIDAE)

Here _;DA(i?) is the measﬁe in the space of configurations
{A(_]‘)} and H{f\(xj} ie the effective hamiltonian (non-
equilibrium thermodynamical potentigl). Parameter A(:E) isg

the macrogcopic quantity and H‘{ A depends on thermedyna-
mical varisbles (temperature T, pressure P €efeGa)e

In case of liquid-crystal phase transition being nearly
a contionus one {HEB, 2-D systems), in the vincinity of the
melting peint'T; : H{f"-} can be expanded in termg of small
A(x)_Thus, Landau theory or fluctuation theory of phase
trensitions [5] can be applied. The correlastion radius

for such a system is much bigger than the lattice size. This
problem will be examined in another worke.

In this article, we deal with the case when the change
of the average </L¢ﬂ.3"> at the melting point is not small
and the correlation radius is of order of a few lattice sizes.
In thig case the only way to follow is to examine model hamil-
tonianse H {A(I)}_WE refer to the analogy with theory of mag-
netism, where model hamiltonians are introduced (Ising, Hei-
senberg e.t.c., see e.g. [5])- |

Two conditions should be fulfilled by H{A(=)} ;
(1), the coordinate-system rotation invariance, and (II), the
finiteness of local-order interaction radius. The second cne
follows from formula (1), obtained from Gibbs distribution by
taking average over atom-scale degrees of freedom.

For systems with relatively high density the form-fluctu-

i
ationg of /\(J?J are expected to be negligible. In case of fixed
loceal order

A(;J=§(§J A (2)

Fa
1] o 'l g
where C;(_T_] - rotation of axes at point a2 A,;"' fizad set

E
7



of tensors. In this approximation DA(:L) Dg(*] and

Ay = Higexy o _ |
Hi lee gengral hamiltonian H with two-body interactions
only has the form

HIAG)Y = §ol o 4G A6, ﬂ(;;))

1th being a scalar. 1ts invariance under g (_CL] gives
with
in approximation (2):

§ G5 AE), A =1EF ARG,

ith /\T= A — . The simplest model (generalized Helsen-
wi 5 :
berg model) is given by hamiltonian

H{AG)Y= Sdzdg T{IG-9) ARADY. ©

T will be referred to as the continous - rotation model
(C - model).

The alternative model, examined in thie articl:, :l;s ;k:
diserete - rotation (or D-model), in which a very Etrﬂxg e
pendence of energy on relative ictatzr::jtepo;; sf 3}

5 regult, there's only &
ve iizﬁur{;:raorientatlma with non-—neglig:.bla prcba:itzty.
In such a case, integration averj}g(xj is Eq‘tmvalznpmntl-
summing up Over discrete orientations gm{lj at eac

Let's briefly examine amall fluctuationg of tha; fc&m ;:nf.
local order. They can be treated as local iitralnﬂ 1:c f;’m‘
Tn harmonic approximation the H“ part of , due to
-fluctuations, is

i : - TR 2 (6)
Hu$ 5{7!3: ld?}f('l)udf'{l‘] uf"rftx) :

Tt extends the well-known formula of the theory of elastici-
ical parame-

ty [b]. The relation between Ay 3,_5' and geometrli P

ter /A will be discussed later.

i i ollowsas
The Gibbes thermodynamical potential (I) ig as f

Z= J%F{T[H{j}JrH {jU} & SLL [af: }.Dg{;r .Dufr:t] (

where &u{

7)

denotes the stress tensor.
3+ The cubic-gymmetry case

Number of tensor fields forming the crystal

-order para~
meter depends on local parameter

o Bymmeiry. The cubic case
is the simplest one. Let's 1ntroduc.e >

> mutually perpendicular
unit vectors (directors) PLL ‘_‘r.) which fix the axes of lo-

cal cubjc arrangement of atoms in point JL « The irreducible
part , E(J:J of the ‘hensnr T' ?.'“r 3 defined by

(g €y CED_ €y gy
N - En O’ txynt(x)
nt[s-&rE' IJ Ai:i % p ¥ J 2

ie the local order parameter of a cubic system.
tion energy of local orders at X ang g is

) L.
H(;t JCCer ST tx)hu{g)) ) :
: ”'J
There is no analyticael solution of the atatistical mecha-
nic problems in 3-D yet. In this work g meanffield approxima-

tion will be applied to obta.l.n, at least, qualltatlve degcrip=-
tion. Ag usually, the interaction of a given
ment of atoms with mean fielgd

The interac-

local arrange-

seyS is considered instead of
the exact manybody problem. The lnteract:l.crn with the mean

field tekes the form:
H=f(TF bT) .

The self-consistence condition for {'T' é,f"> the average of
in mean-field a oximati i
m; PREaRHENR L‘“}ELJ .

{"w}

gg followsg:

LL t gy < 1)
utl:'ﬂ' _ FFS> :
where }) ia the number Df nearest-neighbnurs-

In case of cubic symme try, L‘L

an:i< Iif’f6‘> are




irreducible tensors of cubic symmetry, unijueciy descvibes (V4

one invariant emplitude.

Analyticel treatment in MFA is straightrorwerd, althoush
tedious. The most characteristic features of th:z function
h I'(Tﬂ) seem to be model - indepsnaent.

e In the following, the results for a I-nodel, described
as follows, are reported. The four mein fiazonzls of a cube
are drawn. The gystem of directors, introduced at the begin-
ning of this section, is turned round cach of the =main ciago-
nals over the angle F/J y from the initiel position in
which it coincides with the coordinate axes. One has four i:n-
equivalent discrete positions. They generate a non abelian
subgroup of 3-D rotations (cubic symmetry group).

The m?iel is described by the following cystem ot gqua-

. :

L

& U/ (12)
= 2 e - [
}"aﬂﬁ' Zézr[jﬁxmp{ H/TY,
" .

where | is temperature, Z, — partition function, hamiltonian
f{ is given by (10) with j%i} =T , and the sum extends over
‘discrete positions. :

tionsg for

Equations (12) were solved enalytically in the vincinity
of T=T' , the point of absolute instability of the high
temperature.phase, where Lh? 5 is nearly "isotropic". For
other temperatures, numericﬁf methods were applied (see Ap-

pendix 1).

The physical behaviour of the system is fully cdescribed
by the function & (T), Fig. 1a, b. The solution of Eq. (12)
in terms of & (T), is

_ 44 : rre i i :
L= 3? : {:#FF>-gfr;(=iﬁﬁ€ ) -

<T}253>= <r711.a,1\r"="< T;.zu by g-g_,{‘T’) ;
: TV
{Em}-:{*'qﬂi‘):{q" >=<Té331>=' <Eﬂ>="ﬂjﬂ>:_ a_i{f?.b ;

2228

Together with (13) there exist 3 physically equivalent soluti-

~

ons. 1L iz the ~eaplt of exintencs of four cdiscrete crienta-
ticas lor cryctal roc:. They vre equivalent and at FTTC'TL

thic symmetry iz npensainously Lroken.
Qther mogela, iralusing {: - mafels given by (5), mive

(in MFA) ~usliintively the zame reculise.

The behavicur of the mean-fielg aaplitude a(T) resultas
£ e i . - care . ¥ ¥ ¥ o - T
-romt (1), {there v.e no eithep stable or metastable Macrosco—
Pically ordered siates of the s¥etem ot elevated temneratures,

and (I1), meen ordering tends to saturstion ag Tﬂ“*{j .

The first order character o crystallization is due to
the structure of symmetry iroupn, ~esulting in existence of
cubic invariants, c.g. .I-_.f‘ﬁ“' T! v

Function a(T) exhibits some interesting modelindepen-
dent "numerical" features that reflect properties oi‘fifﬁ) 1t-
self. First, CL{FFJ practically coincides with & {Q) over the
interval og'r'{*l';—ﬂ'? with .dT/T; _{} Us 2#0. 24 Second,
in the neighbourhocd of rI':; a(T) es ('T'M-T)#fab with @, =
— cr,('i"ﬂ}n.zci.fﬁ}/ﬂ. As a result, (1), the metastable crystal-
-state temperature interval is very small, and (II), the pre-
-melting phenomena take place close to T; « They are examined
in the next section.

4« Thermodynamics snd elagtic properties of cubie
system. Pre-melting phenomena.

In this section the most important characteristics of
the model, resulting from solution (13) of Eq. (12) are brief-
ly reported.

The melting-point 71 is very close to T; y where the
crystal becomes absolutely unstable. The following relation
holds

T4 |
-
In the neighbourhood of FT; a(T)takes the form



L

T ey Psscem %, (15)
JM-T;_ (‘ja‘:ﬂ'_ﬂ'u} £ o 5 k

5 16)
with @ 2 0.45 and gua 95. (

The configurational part of thermodynamical potential
,ﬁ@ per one cell ig (see Appendix 2)

(17)

The melting point \T'(; is the aol[ation of e:qua;jr.icm \
é_q';i = A Q)O where A%’(T)Eg@((}) .'T') (see.- Fipat 2)e

In the vineinity of '-f; the 1life time D?‘ﬁmitas‘table sta-
te 1s small. It can be easily understood; at | = TL there is
relatively hizh ( ;51,*'4} density of "wrong" cells (se‘ae (221)
(i.e. cells with orientations that do not coincide Tﬂ:th. the
average one), which give rige to liquid phase nuclei.l with di-
mensions of a few cells (i.e» ~ 101, , where Y, is the lat-
tice size). The existence of such defects severly reduces
(to & [ ) the temperature interval, where ‘1:_1:13& metastable cry-
stal cgn be observed: ATHN CL(T,-Te )10 T

Te%
Heat capacity is given, near . , by

_ AP ol (T,,-’f* ) i (18)
.TI =—T lli_‘_\ pR (i Py ; n

- M2
The constant at singular part (TH-T) ig small and a:
T'f—‘Tc aCCT:_Jw_{ ‘?, Quantity C is the heat capacity o
J =

one cell, which containse o 10 atoms. Hence, in our modeit

| heat capacity
the ratio ﬂLLT,;,) /CPW NQi where C}P is T:he Rpie
of solids according to Dulong=-Petit Law. It is assume

= . f
Debye temperature rr; is lower than I{ P T:_ ?ﬂ’T-g

Other degrees of freedom, e.g. the fonon ones, cl%a_.'nge the
i i cong=
melting temperature. In case of 1n¢reaaing.t1:;_ (with G
tant) the heat capacity jump dL(‘T‘;) also increases.

The model examined here is volume - and pressure-indepen-
dent. In order o obtain such a dependence, one has to add to
the hamiltonian terms, deseribing the interaction between

10

strain and local order (striction). In magnetism such a pro-

Eram was carried out by Larkin an¢ Pikin [?]; We obtain the
wanted formulas starting from physical arguments.

: ¢ :
For a given configuration 1;"1{2':)}each "wrong" lattice-cell

becomes a source of atrain and related displacements,gu.
—ie =35 |

0 it rF-r
SH(_'I"-I"‘r e i%—:_-r-:,{g (19)

=i -'l"r h, o o .
where p ~ cdenote radii vectors of defect and exsmined point,
A

respectively. Formula (19) follows from theory of elasgticity
and describes the dieplacement due to the action of the Ffor-
ce (P’) satysfying the condition SF(FJI:{.V-=O, After the
8Verage over random positions and orientations of cefects ig
taken, the enisotropic part of strain vanishes. As the result,
the volume change SV_ of & body with radius R 1\

where n. [F) and Hd are local - and averaged density of
defects, respectively (see (22)). The above formula (20) is
formally equivalent to the one obtained with help ot (7)

in the epproximation that for a given configuretion JA(%)Fne
only contribution to the integral overw{a comes from

{}jr' (X)} configurations with the lowest energy.

In this aj)proximation, the mean isotropic sgtrain of each

cell vanishes, for fixed pressure p=- % &,y In other words,
in process of volume change due to disorder, the cells are

not deformated (on average), for p = const. Hence, the "mean"
local parameter /'\c_ remains the same. As a result, the confi-
furational part of thermodynamical potential

with CP(PJT)' '

The next 'appraximaticns should teke into account:(I), the
energy due to non-uniform an

{17) coincides

d anisgotropic 'part of ceformationg .
(1t main part is local and is included into A - rield na-
miltcnian H{a‘lﬁ?)} 3(1T), the interaction of defects and

(IIT), the elastic constant renormalizaiion (as temperature
changesg). ‘The Last point will be briefly discussed in this




gection.

From the above arguments it follows that AC (:TJ 5 EQ. (18),
ig in the first approximation isomorphic to experimental con-
stant-pressure heat cepacity (see also [thP'

Fig. 3 presents experimental data (4(,) for AgCl 10 ,
(line 2), and theoretical results, Ba. (18), (line 1). The
experimental data for ACP were obtained from CI’ by substrac-
ting its non-anomalous part. The constant A 1in AC, (T) =
- A(TM_T)"}”I ig taken as to fulfill the condition

AC(T) = aC‘P{T'L ¥

For the coefficient of thermal expension, one gets from

(20)
el ﬂ)_“dﬁ dlalT)
ad =57 bk : L

kT

In Fig. 4 the temperature dependence of ‘&"Lr Eq. (21)
and experimental data for ﬂ,g};_l__ [9], are presented, by crosses
and dotts, respectively. Normalization, enalogous to the f‘l‘
case, was applied. *

In the vincinity of the melting point T, , Gruneisen
Law, (stating that the ratio of thermel expansion coefficient
to the heat capacity of solids is temperature independent,
gee e.g. [";11} approximately holds for and both in
theory and experiment 9, 10 « It results from Eg. (18) and
(21); both these quentities are proportional to temperature
derivate of energy density .

In the following, the elastic properties of the system
near the crystallization point are briefly examined. The irre-
dueible (anisgotropic) part of cublc elagstic-congtant tensor
ig described by one invariant amplitude. From here and from
geometrical arguments (both they describe the same anigotropy
of atoms' locations) it follows thaet irreducible pgris of
1_*[‘35; and rflf‘,&g' are propa,ﬂf%anal. The fact that ‘T:F.la’ e

’1"-1‘?""- and not to l“%gr {the elastic-modulii tfen=-
gor) results from phyeical argumentsy e.g. from the compari-
sion of the formula for striction term 'TF(TLJH) with for-
mula (6).

12

Elastic behaviour of the system near —[:_ reflects the
imperfectness of the lattice due to defects (texture)s. Let's
find their concentration. Consider V= A, + A, cells, with
.)'-"rd "wrong" and ﬁg "right" ones. Suppose (for definiteness)
that "right" cells occupy state 1 (i.e. have discrete orien=-
tation No 1), while defects occupy states 2,3,4. As a result
of the symmetry the defect-states are energetically equiva-
lent. The sum of TT;iﬂ over states 1,2,3 and 4 vanishes, so
it doesn't contribute to a(T) . TheMright" cells give the
contribution equal to o(0)/Y . One can easily obtain the fol-
lowing formulas for the density FLE:FA of "right" and "wrong"
cells, respectively:

o= dm

S = (22)
=gl a.{oj)' |

The temperature dependence of H‘d is plotted in Fig. 5. We
find that I, Che i(4.

Suppose the inhomogenities are smgll. In this case the
corrections to mean elastic constants cen be find. Following
Lifshitz and Rozenzweig [12] (L.R.)

—m,

[ 0 o Pour 4
sz AR D
whpere /\4 5 is the effective elastic-constent tensor and
oy AN averaged over the textuﬁe. The corrections '&JFIF
contribute both to 1rreducible(ﬂ ) and isotropic part of ﬁ-, :
In the latter case they describe anharmonicity due to disor-

der.

Anelytigel treatment carried along (L.R.) lines ghows
that, (1), A o (a(T) end (1), 4, y are suall and pro-
portional to a(T)(4- g‘_—gj) + The necesgar:r isotropic parts
of 1“!”#5_ were rfalcen from experiments ;L4’9]' The temperature
dependence of Aiiﬁ (solid line) and A (dotted line) is gi-

ven in Fig. 6. The sirong dependence on T—-TC of Adfi};

13




ReT eresnces
may explain the experimental fact of the rapld decrease of

clastic constants near q: [41' 1+ L.D.Landau, Phys. Zs. Sowjets, 11,
11,

]
In Fig. 7 the Young modulus E(E{'/)} ;‘E::{_‘],D,O), is plot- Phys. Za. Sowjet., 11, 545 (

ted against the reduced temperature o =1‘/11 (s0lid line);
the experimental data, [13], are given by dotts. The isotro-
pic part of elastic-constant tensor was taken from experiment

2« 3.I.baries . ,E3T2 70,578, (19768)

ie PeCe de Gennesg. "The physice of liguid crystala",

- o :
equaled to its experimental value. i 4+ L.Hunter, S.Siegel, Phys. Rev. b1, 84 (1942).
In the next approximation one has to take into sccount 'l s A, S.llaranuncki., B.JLJIORROBCRAL, CAVKTY A HOHERS P2ODHS

|
the anharmonicity effects, leading to the change of the cha- v , &30BHX Nepexornop, Haywa [, (L975)
racteristics of an elementary cellie, corrections to )E :

3 6., E.M. Jadomy , Teopus rocT#
proportionzl to temperature. i ”ﬂ'n'ﬂﬁHn?y:_ e ! ERETIERY
ilayxa 4. (1965)

2+ Summary Te  AJMJapems, C.A. Maxmn, . 70 56 - 664 (1969)
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in our cell-model the concentration of defects even at 9. R.M.Nicklow, R.A.Yauné, Phys. Rev. 129, 1936 (1963).
the melting point is relatively small, so it geems resonable -
to describe defects as cells with "wrong" orientations of cry- 10. K.Kobayashi, Phys. Rev. 85, 150 (1952).

stelline-exes. e L1 Jaunay, SoiJinmm — CraTHcTHYecKas i 3MKA

For the disordered phase E}iquidj_ct.= 0 and the number Hayra il. (1876)
of cells with every kind of orientation is the same. For that 12« .WJumgmnn, AJH., Posemupelr I0T¢ 1@}95? (1946)
case every cell has at its surrounding cells with all kinds
of orientations. Such a chaotic surrounding leads, in general,
to the change of the characteristics /kﬁ of local ordering.
The treatment of that effect (necessary for the liquid state
theory) exceeds the frames of this papers

13. FlDiEan, Ph:,rs. Hev. 11%, 15?3 {19&3‘:‘}«

We thenk B.I.Shumilo for helpful discussions.
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The figure captions

12, b The plott of function @ (7T) the solution of

Eq. (A.9), versus the reduced temperature *‘i.",’=71:
LS

2 The plott of thermodynamical potential a® (v
Ba. (17), versus the reduced temperature T,

3 The temperature dependence of the heat capacity
ﬁC{T} Eq. (18) (line 1), and A CF(T)fcr AgCl
l10], (1ine 2).

4 The temperature dependence cf the coefficient of
thermal expansion Eq. (21) (solid line) and
4,{7 for .A.gCl]_ﬁ]{croaaes).

) The temperature dependence of the concentration h,
of defects, Ba. (22).

Mo

b The jgmperature dependence of /\“” (solid line)
and A, ,, (dotted line), Eq. (23).

7 The temperature dependence of the Young modulus

E(3), § =(1,0,0), in theory (solid line) and
experiment([‘}j], for KC1), (dotted line).
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X ppendix -l

In this Appendix the way, in. which the golutions (13) of
Egqe. (12) were obtained, 18 pregented.

In our discrete model, the yllowing symmetries take place

(in each discrete position):

1 11 e ] |
e L
rT:ii,l 'T;uf. ET;;;; ’

' L kb
T T;ﬂ?._.T:lL!H i Eri::z's,
= -
rg::z; ‘Em iq::zr
|
R ]
That is, only three of rf:mg are independent.
Let's introduce the variables x.') ¥ end Z ¢ |
A : i : 2 (Ae2)
""47:11:> ! 7'<TT;113> , £ <Ty2337 -
In these variables the MFA hamiltonian H (10) is
i =R ERT ) =44 6T o * ¥ Lt | (Ae3
In the vincinity of ‘T:-*, at which
{A.41)

x(hnf)::>’CTL¥)=:jf(j;f) :-C}j

and ¥ are small and the Gibbs factor in Eqs. (12) can

K }f ;
bfe expanded to the gecond order with respect to h}}r’fz . This
yields
it
=i ] il =
x-y= ¢ (x=y)(1*3 F)
oF
7 g Z (A.5)
i - R e
i :T':,"(K*?')(i 3 T )}




= B o_ _448
where TL = e

Ease (A5) have 5 solutions:
’ (A.b)

#

e
i s
where £ =i-§ ‘-1-_-? [:-f ;I-..‘*) « Let's consider (for definitenesgs)

the second sclution. It implies

)
{T:r'u&): ELELI )

T =L EE
STz >= &—h ) | (A-7)
N A < 1 )
< !Eii\)“ T z

with a,{‘p) to be found. The hamiltonian (A.3) becomes

it s =diaen [T el F (he8)
One obtains 2 identical equations for & (T"), of the form
: _ € — ;
L= = LT}“‘EMP{‘ H/'T’} ‘ (A+9)
From here
E(T)
o e lialy

Appendilzx 2

i

Let's derive the formula (17) for &G%QLTLHFJ LErom. Bl

definition, the equation

E{'ﬂ%} =0 {AdD
a
should be equivalent to Egs. {12} or (A+9). From (4.8) one
hasg ; |
‘:;I‘ o r :[ _;j =y "- b, ) 2}
da _— EZ i (Iﬁﬂ _g;i‘f 7;23: ) (41
which, with help of (A.9) and remarks done there, gives
: with given by (17).
f—c:.(ﬁﬁ)(“JTU:O > i A
19
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