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ON THE QUANTUM CORRECTIONS TO THE STOCHASTIC
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Abatract

This paper congiders the motion of a non-linear gquantum

oscillator influenced with en external force with a broad fre-

\ quency spectrum, The time of the destruction of the classical
nhase trajectory by the quantum effects is exponentially amall
in the cage in which the classical motlon of the non-linear os-
"cillator is stochastic. The approach is developed which takes
into sccount all terms of the form [BA%(+)]® . These principal
terms have an exponentially increased factor ﬂa(t) for every
power of ha
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I. INTRODUCTION

This paper congiders the motion of a non-linear quantum
ogeillator influenced with an external periodic force. The gi-
milar classical nroblem has been investigated by numerous au-
thors and, as a result, a perfect clearness has been achieved
(see, for example, Chirikov's survey articles 1}). In the case
of the force with a broad fregquency spectrum the behaviour of
the oscillator depends mignificantly on a magnitude of the
Chirikov's stochastisity paremeter K2 ), The motion is a quite
dynamic one when K < 1 but takes a stochastic character as
K > 1, In particular, phases are random at K > 1 i.e. the
phase correlations decrease exponentially with time,

A classical expression for the action Ic(t) ig of the
form (the classical quantity is denoted by the subseription c¢)

t t '
T () = [ ab, [ at,6(t,)8(t, 0080, (t,)~ 0, (8,01 ()

(For the sake of simplicity we choose a zero initial condition).
The phases mcft) in eguation (1) are a function of the action
I, ic = m(Ic)- For a carefully investigated case of the for-
ce which is a sequence of instantaneous impulses

[+ 2]

g(t) = g ELW 5(t =sT) (2)

o =B

the action IG&jincrEESEB, on the average, linearly with time
if K = g Tow/T > 1. Thig result is unchanged up to the
time t ~ ngﬁxb , 28 well as in the case when the im-
pulses have a finite but small duration 7T, € T. The increa-
sing of action is due to the range of values where t& o i
while region t1 ﬁ'tz determines action fluctuations.

Casati, Chirikov, Israilev and Ford B]have raiged a gques-~
tion of quantum-mechanic effects in stochastisity. Investigati-
on of a plane rotator influenced with the force (2) has shown
that the behaviour of the gquantum system could be quite diffe-



rent from the classical one even at the high energy when a _
quasiclasaical behaviour could be expected a'priori. In parti-
cular, a nure dynamic effect of quantum resonanceg wag disco-
vered and later *this effect was invegtigated in detail by Is-
railev and Shepelansky[4] Also, the distinetion of the time-
=dependence of energy on the clasaical case was achieved by !
means of numerical calculations. It's more or lesg clear that
the firgt effect is connected with the specific time dependence
of the force (2), while the second effect apparently has a fun-~

damental character.

An gttempt of analitical investigation of quantum effects
in the stochastic motion of the ngn—linear oscillator was un-
dertaken by Berman and Zaslavsky « They have shown that the
first correction proportional to #i increases exponentially
with time so that, as emphasized by the authors, the exnanaion
over ﬁ_ becomes unapplicable very rapidly.

In this papér we will develop an approach which permita
to analize an influence of quantum effects on the system motion
up to large times. The approach is described in section IT. In
section III a generating function for average values of dynami-
cal variables is introduced, n section IV fhe time-dependence
of that variables is discussed on the examnle of the action
I(t) and a closed expression is derived for the action in the
quantum case. It has a form suitable for comparison with the
classical expression (1). Both quantum effects are considered
in the case K € 1 when the clasgical motion is dynamie, and
in the cage K # 1 when it has a stochastic character. It is
shownt that guantum corrections in quasiclassical region are
small =2t all times if K € 1 while at K » 1 they can exno-
nentially increase with time. In section V we discusg shortly a
a formal enalogy of the developed approech with a classical
theory of random processes and the reasons for which, in apite
of this analogy, it ig impossible to treat the approach as a
theory with hidden wvariables.

)

II The statement of a problem and
approach

Let us consider a non-linear oscillator degecribed by the
Hamiltonian

f=8-kgt)@E+at (3)
where g(t) 1is an external time-dependent force and

o i ~ g'

= h w N ~h%yn(n =1) : (4
iz the Hamiltonian of the unnerturbed non-linear oscillator

characterized by non-linearity y(hy € muj and n=a'a.

Operators at ana ; have in the basis of eigen-functi-
ons |n) of non-linear Hamiltonian ﬁﬁ the same matrixz elements
as the usual creation and amnihilation operators and satisfy
the ordinary commutation relations Tor thesge operators. Howevern,
a connection of the operators E, a®  with the operators of co-
ordinate ¥ and momentum ;E! are more compliceted than in the
case of a linear oscillator (see details in ref.'-).

The Hamiltonian (3) is expressed through the onerators
;, ;+ by analogy with the classical way when a Hamiltonian
function is expressed through the angle-action variables. This
Hamiltonian may be transformed into the classical Hamiltonian

function

-
[}

o lo, | 2= vlo | "= g(t) (@ + of) =

¢ B2

 wT? o [+
0 E ey 2g(t) VI, Cos 9,

M X - — -~ &
by substitutions b a - o= Jf;e i {hato o= Jfgai ¢

The conneciion of operators a2 and at of the non-linear
oscillator with classical angle (8.) - action (Ic"} variables
becomes obvious if the coherent states of non-linear oscillator
(see, for example,[ﬁ’T]) are uged. Just as in the case of a 1li-



near ogcillator they are eigen-functions of the anmihilation
operator :

aIII T ['EI-

and may be constiructed from eigen-functions of Hamiltonian (4)
as follows

|ﬂ>=erp[-%'5]nzﬂ \??' [—.\%]nln) (6)

Unlike to the coherent states of the linear oscillator the
functions (6) have not the Geussian form in the coordinate or
momentum representations, but an energy distribution. has a Po-
isson character as before. It's import}aﬁt that the coherent
states (6) are minimised the uncertainty relation A for opera=—
tors -0 and

1 Axat

\J n+1 '\‘ n+1

if the sction I=h {«|n| &) is sufficiently large I > k.
Therefore, they describe, in the claasical 1limit, oscillator
states with definite wvalues of the action Ic and angle ﬂc J'

which corresponds to the point on the phase nlane of variables
I,» 8, or, that is the same, of variables o, Cﬂ; .

Gr;s e =%[

It's well known that description of quantum mechanical
systems with the Vigner's function have common features with
description of clasgical statistical systems with a distributi-
on funetion. A density matrix in the coherent state basis
(alp@rast)|a) = p(a*,x;t ) is some modification of Vigner's
function, The properties of the function p(a*,x;+) are in
many reapects the same as thoge for a classical distribution
function: 1t is real, positive and satisfies the normalization
condition:

i
nh

[ d%wp(e®you;t) =1 3 a% =dRex.dImo

It ig easy to show that p(e*,¢;t) =1 , too.

The average value of operator ﬁ(ﬁ’b,a} of arbitrary
dynamic variable is expressed by means of p(a*,x:; t) in the
following way

(F)= spf(a*,a)p(a%,a; t) = o & .f d u:I‘(A}(m"‘ o) p (0¥, o t)
T

where F(A}(u: w@) is obtained according to the rule: f‘(a ’ a)
should be tranaformed into antinormal form and then {ﬂ,/\r)tt and
('1,«’\]?1)@ will be substituted instead of overators a® and a
correspondingly. Hence, it is clear that the nlane (o ,0*) is
analogous to the classic phase plane (cxc,m:':).

The general method of phase plane in gquantum mechanics ba-
ged on algebra of operators Egi)fu (% :tii) has been develoned
by Agarwdal and ‘i'.l':rlf'[E ]. Because the commutation relations of the
operators E, a+ We used are the same as was assumed by Agarwal
and Wolf, their results are applicable also in the case under
congideration. In particular, following to &l
the equation for p(u*,x;t ).

we have derived

where T ig of the form

L(e* a3t )= —-i[(mu—aﬂa[z}[cc*a%r -0 E@E] 3

- 6 [ - 2 )= hr[wr 2y - ot 2]

doc* © oo

This equation is a gquantum analogy to the Licuville equation
for distribution function £, (e*,3t) and turn into it, if the
only term nroportional ‘t-o‘h in the operator T will be omit-
ted. Some initial condition should be formulaled for Eq. (T)s
It's possible to describe the motion along a trajectory in the
clessical mechanics with the distribution function of the § -




- functional form. The quantum-mechanical analogy of such a
condition will be the density matrix constructed on a pure
state |¥(%) ). On the bagis of the coherent states it is of
the form

2
ola*yast) = | {x|¥(®)) |2= exp[- J%L] 1% s6) |2 (8)

where Y(x3t) is the wave-function at the o - representa-
tion. Unlike to the clasgsical digtribution function it is im-
poggible that the function (8) be proportional to & - function
at t = 0 because of a finite magnitude of a phase cell in .
quantum mechanics. The condition |¥(0) = I&} will be a na-
tural analogy to the & = function initial condition, i.e.

1 - _A . 1 Jodt| ®
— p@* @;0) = — pg (@*,2;0) = — exp[- (9)
wh i ah < h b

This condition takes the & - function form in the classical

1imit B - 0.

The general case of an arbitrary initial condition for
eqs (7) is reduced to (9) with the help of Glauber's diagonal
representation 1D]=

pla*,a30) = = [ a%4P@*, &) pg (o*,2;0)

It's clear that the solution of eq. (7) with initial condition
(9) plays the role of the Green function on the plane (x*,cx),

III. The generating function for the average
value of dynamical variables

It's convenient to proceed to the equation of wave functi-
on ¥(x;t) related to p(a*,x;t) by eq. (8).

g 3@5 Wixst) = Hlopt) ¥ (est)

(10)
H(ust) = ey (t)qcﬁ+a h[ma ¥
il ol el s B Gl i
where 1s w0 = o + ‘h‘f. The equation has the formal =solution of
the form
+ -
T(x3t) = Taxp{-i.&d‘rﬁ(m;t)} ¥(xs 0) (11)

We could repregsent the exponent under the chronolngic;tl ]
production with the help of the formula (see, for example, " )

2 :
exp {-:Ltry J: &T[cr. 5%;} } = i

y t
= [ DA (T)exp {i—;}j atAa¥(t) ~ 1 J; ﬂtlfr)maaa}

The functional integrals are taken over all real A(T) and
are normalized by condition

J Dl(’r)éxp { fg; _E ﬂ't?l..z('l:}} =1

The transformation (12) reduces the exponent operator (11)
to the linear one over the derivative E%T e Ag a regult, it's
nossible to represent (11) as

Yzt ) = f DA(T)exp { i }E at A%(t) } xh(uc;t} =
Y o

We are usged the notation
x.?,l. ('Iit) =

=exp{—- % [sﬁt)aeﬁt)]} ":I:‘{exp[ilzd':(m -.1(1:}}1 {m - iGi{t)] ;0 } (14)



t
6, (8) = | avg(c) expft | &t (@ =A(e")
A 4] . A
£
8, (8) = J; atg(T)Cy ()

The brackets with subseriptions (+) and A in eq. (13) empha-
gizes that functional integration hasg a similarity with avera-
ging over the Gaussian random noise A(T) with a correlator

{l(r}?»(':')}*(”:’: 2ihys(t—-T1) ' (15)

The initial condition (9) means that

rl@-
h*1%f

2
o+

4

For the sake of gifnpliaity, we will confine ourgelves to the
special case o = 0, ¥(,0)=1 _assuming that the pulse at
initial moment + = 0 gives the sufficiently large momentum to

1
Yo (x30) = erp[-- x

the oscillator. The nonzerc initial conditions do not change
significantly the results.

Under the chogen initial condition it is obtained from for-

mulae (13) smd (14) that

P{oc",l. e3t) = exp[- —1%2] { exp{—- % [Eh1(t) + MG’H&)]}}(;‘.i x
(16)
« Cempf- 1 EROEIRERO] >

where the symbol ()?E-} means the averaging over the Gaussian
random values A(Tt) with the correlator

(AN YT = - 21bys(r T (15")

or, in other words, the functional integration with same weight
function is in the formula (13), but a complex conjugate one.

10

Below we will be interested in the quantum-mechanical
average of operators, which are the functions of operator 5.
Let us introduce the generating function ( 0= & <1 )

oy o Eadelt g s
z(g,t)_“ J‘do:exp[ ’é’{ 5 ]p{m,m,t) 1T

In particular, Z(0:;t) coinecides with the normalization inte-
gral, the action is equal to

I{t)

4 (0 |A)|0) = Jgf %o (la|2=h) p @ ost) =
iy

(18)

_h[az it

§=0+‘1]

and so on.

It's posgible to carry out explicitly the integration over
d% in (17) with density matrix (16) and after that only the .
functional integration over 3.1 and ?Lz remaing., It is more sui=-
table to use the lincar combinations

A = @ rp (e 5 0 A@ =p, ) -p, ) (19)

We include the constant Jacoblian of the transformation in the
normalization constant.

It's easy to sece, that the correlators of i, K, are

< p1(r)p1(r'} >u g = AR () >u SR
T s s {EG}

(B, () )H 0= shys (t -t1)
Ts

A
a1}

Z(Est) = (1=§) (exp {% @Hfé;t)}}p i (2
: o

where




Ty

[ arp, (T) ] x

t t
@HCE;Q =J'L; v, {, d'rggf’ﬂq)gi'cz)ﬂas[w(ﬂ—TE)#TE

+ t
x{f*‘-@)exp[—if aru,(t) -if ﬂruzi'ﬂ')] -
T T

1 2 (22)
T4 T4
- E(’ﬂ urz)exp[—ir_r'a c'i‘l:uz(r}] - e [sztq}e}’:p[ﬂ {: d'ruz{r}]}
2

and 8(%) is the step function: ©(t)=0 at T>0 , 8(7)=0
at ¥ < 0.

IV. The time-dependence of the action

In this section we show the time-dependence of the gquan-
tum-mechanical mean values on the example of the oscillator ac-
tion dependence, In accordance with (18),(21) ‘the action T(t)
ig the following

I(E) =

[= e X

t
dt|£ dtag(tq}g(tz)e_imft1 -tz altst, sb,)

where Q 1is
t

Aty t,) = (o {=17 arfolr-t -0 =5))] uy(®) e

.t 1
-1 axfocv) v 0 (o - B RO LINC)

and 2, (0;t) = 8, (t)e

We could not, in general, to derive an explici?® expression for
Q@ « There exists, however, the cage when thisg is posgsgible. If
the force has the form of instantaneous impulses (2) and the
condition yT =mm (m-integer) ig fulfiled, then there is no diffi-
culty in seeing after the change of variables in the functio-
nal integral (23)

g

p (®) » p, () +hy[6(c-t,) + 8(T-1,)]
p,zl':'l'::l' - |.L2(1:) + ﬁy[ﬁ{tat1] -B(’:-tzl]

that

Q(NT;s, T,8,T) = exp[iky (s, - s,)T]

(N =z s, ,s,~integer Y Really, the quantities p(v) enter in
the functionul @1E(t) only through the integralsy which are
arguments of the periodical functions. Therefore, it does not
vary under the change of variables if the mentioned condition
on P is fulfilled, so Q turns out to be proportional to
the normalization integral. As a result, we have

Einz[ﬁ_g mmﬂjﬁnq
Sin® E-mmojﬁy

= I(NT) = g>

Thig pure guantum-mechanical behaviour[h 8 the same origin
as the guantum resonance discovered in ref. 3 « In particular,
Iy increases quadratically with time if w_= & ohy (q -

- integer).

Returning to the general case we represent Q in the form
Qb ,t,) = exp{ =R (£it,,t,) +1T(bit, %)) }

It'e easy to verify, making the complex éonjﬁgaticn egnd chan-
ging the variable pE(T) - - uzfr) that

R{t;ta,t1) = R(t;t1,t2) 3 J(tit,,t,) = = J(tit,.6,)
Therefore,

I(t) = Z at, X-dtzsfﬂ Js(tzJ exp [=R(t3t,,t,)] = (24)

x Gns[ﬂi(t_‘ _‘bz) -J(f;‘t_l ,‘L‘-z:']

13




This expression must bte ftransformed to expression (1)
in the classical limit h -+ 0 and, moreover, m (t) = w t -
-2y f d'r:I (t) in the case of the Hamiltonian (;j 1?ﬂﬂer;_[u.entl;,,l',
J (st T,t ) has the classical limit equal to 2y I dTI (t)
andR vaniches in this limit. Thus, the exponent 1n (2#) de—
pende on quantum effects completely.

As has been mantioned in the introduction, the region of
small 5t12= t1-t2 was significant in the classical case.
Therefore we will concentrated on this region in the quantum
cage also. By virtue of anti-symmetry it is obvious-that
J{t;t1,t2)=[}.lt'ﬂ easy also to show that R(t;t1,t1}={]. Re-
ally, the function Q(t:t £, %, ) in the case t, =%, is reduced
by the linear shifting of the variable M, (t) to the normali-
sed integral for a density matrix of the Oqclllatar described
with a Hamiltonian, which differs from the Hamiltonian (3) by
the additional term _}thE L't1 -t)ﬁ where t, is some parame-
ter and the step-function e(v) 1is determined as e(t)=1,

T >0 and e(t)= -1, T < 0. There exists also the direct
proof of the atatement.

When 5t12 is sufficiently small, it is possible to0 ex-
pand J and R in a power series 8t ,.We will show that

2

R(tst,,t,) = B a%C6,)(6,,)0% § a%Ct,) =2vI (6 DIT(E,)]® (25

Therefore, the contribution of the region t, # t, to the
integral (24) are demped additionally in virtue of positive-
ness of the R . The magnitude of the |I‘(t1)] depends signi-
fiecantly on the Chirikov's stochastic parameter K . ]1"(1;1)| as ]
in the case K € 1 when the classical motion has a dynamic
choracter, so that the quantum corrections remain small at all
time, The guite different situation occurs if the K 2 1 and
the classical stochasticity takes place: the functimﬂlfﬁt1ﬂ
increases exponentially with time in some region of t,.

Let us turn now to the vroof of the statements. Suppose,
that the amplitude of the force sufficiently lerge g‘; P ﬁ
so that it is possible to evaluate the Tunctional integral (23)

14

by the saddle-point method. It's useful, first of all, to eva-
luate the normalization integral Z(0,t) by this method. The
saddle-noint conditions are of the form of the following sys-
tem of integral equations: '

pq(‘r} =
g & Ty
= E"( }{; dt, ,E dﬂrzg(11)gfta}cos{m{r1-1:2)- iadﬂcfp‘l(-::}] 2
t t L
x{exp[-i /5 d'l:-'uz(t')—-i Y d'l:"p.z(‘l:)] —B(tz—f1)exp[i Idt’pztr'}]}
T, T, ¥,
k() = ( 26)

T t T1

= =2ty [ av, f av g, gl )8infulr, -7 ,) - avtp, (51)]
o 0 T
2

t +
x {exp[—i / &T'uzfﬁ}mi.f dr‘uzfr')] -
ko e

4 b
—'E'{Tq—?a)ezp[-i .!'tdr'uz(‘!:'}} - 9(':2-1*1}&::;:[1 i at 'ua(r'}]}
2 2
It has the solution uz('r)= 0 and
T T ey
L, (wl=2y [ av, [ drag("ﬂ‘.,)g('rzmas[m{m-rz)—£ d‘F'u,,('r‘}] (27)
4] O 3
2

-1
Comparigon of eq. (27) with eq. (1) shows that e H,(t) coin-
cideg with the action Ic(t} of the classical oscillator des-
cribed by the Hamiltonian (5).

The function @12(t) vanishea on the saddle-point tra-
jectory (27), so that the magnitude of normalization integral
iz determined by a pre-exponential factor. It 1s easy to show
that it is equal to unity. Thus, as it should be exvnected the
saddle-point method gives the eract result for normalization

integral.

15




Let us congider now the functional integral (23) which de-
fines the function Q(t;t1,q!] . It differs from the normali-
zation integral Z(0,t) by an additional term in the exponent
index without the factor 1f”h « Therefore, it seems possible
to extract this multiplier from the integral at the saddle-
-point trajectory (27). It's obvious that £(24) coincides
with the classgical equation (1) in this approximation. 1If we
take into account the multiplier mentioned above the saddle-
-point equation will differ from eq. (26) by additional terms
ﬂv[a(r—t1}+6(1—t2}] in the first equation and
hy[e (v~ t1)-E(t-t2)} in the second one respectively.
Thege terma shift the saddle-point trajectory proportionally
to h.However, the nroportion coefficient could be strongly de-
pendent on time. In this case the quantum effecis could incre-
agse with time rapidly.

With the said above taken into account, we will decompose
the solution of the new saddle-point equations in a power seri-
eg of at12 . In virtue of the symmetry the expansion of R
gtarte with the second power of 6t12 « If we carry out the
expansion including the second power fterms, we obtain the fol-

lowing:
©4 S
I(tst,,t,) =2y [ av la()|® =2y [ av1, (%)
tE ti‘.
e : (28)
2
RCbityt,) = Be2r® [at,) + ] ava(mE(est,)| (68, ,)
Here the functions a(v) and E(v;%,) are introduced:
J T tf
a(t) = [ ar'g(r'}exp[imr'-i f :iT"Ic("F"}] (29)
LH] [u]
and é(r;t1} is the solution of the equation
+
: 1
E(vst, )= Hys(vit,) = 4y £ av's(t,v')E(v";5t,) (30)

16

where

gétiz') & f; [a(*t:)a* (1) mai"('l:)a(r'}]

in the time region T < t1-

There is no difficulty in glowing that £({28) could be
rewritten by means of eq. (30) in the form (25) (see appendix).
As shown in the appendix,the function ﬂa{t1) under condition
K =yg.T > and at large time t, > T  is of the form

A6, ) ~2V o K & [ i;" ]Eexp{E 1;_" S [(4}{}2 _:_11]} (31)

The real parameter of the performed expansion is
t t
1 4
X =/ drpafr) = ﬁyﬁt12 I av fo;t1)
0 0

It's easy to verify that X%/R ~ hyT/K = h/g? < 1.
Therefore, the expressions obtained are wvalid for the fairly
large R > 1 insgpite of |K | € 1,

It's posgsgible to establigh that the eigen-values of the
aecnndary—derivﬁtives matrix of functionel (22) increase expo-~
nentially with time. Their product determines the pre-exponen-
tial factor in the saddle-point method, But the number of such
terms 1s proportional to time w~ t1 fD that pre-exponent fac-
tor add *to R the terms of order %4.This changes the result
ingignificantly.

Congsequently, expression (24) with R determined by (25),
(31) $akes into account all the terms of the form [ BA®(£)]"
in the expangion of the action I over h.

They are principal in the case of exponentially increased
A(t)s Thig result ig considerably better than the usual quasgi-
-clasaical approximation. It should be pointed out that it is
impoggible to achieve such a result for a wave-function direct-
1y,

et



At least, let us discuse the corrections which are genera-
ted by the following terms of the furictional expansion near
the saddle point. Remind that they do not contribute to the
normalization integral. In the case, when the action I is eva-
luated, the saddle-point trajectory shifte by a magnitude of
the order hﬁ(t1) =0 that these corrections do not vanish.
But they are proportional to the additional power of h and
hence are negligibly small.

Let us clarify the influence of the guantum corrections
on the time dependence of the action I(t). Since H(t1=t3}= 0
it is clear that the contribution of the region t1=t2 is not
changed by the quantum corrections in the case of the & =
- functional impulscs. In this case the quantum corrections
snfluence the terms, which describe the action fluctustions
are stipulated by the complicated character of the clagsgical
phase trajectory. The influence is gignificant in the region
R » 1 which is achieved at |8t ,| > T at the times

& ~ T 1n {EY;-K] (32)

The estimate ig true when the expangion over N 4ig valid, L.e.
byr |P(*)] € 1 (33)

(this is possible only if hyT £ 1)

' However, in the case, when the impulges have the finite
ﬁuratiun'ru , the contribution of the region t1=: tag gT
is wechanged until To JEjﬂ(sT) € 1 but decreased by. the
factor ['ruﬂ a(sT) ] as long as T, bhoaer) > i Hence,
in this case the acuantum corrections slow dorm1 the exitatlon
of the oscillator beginning with the time

£** ~ T 1n [[ Efll.] / JhYT'K] 4

'e could not say Tor how long time the tendency will remain

5 i

unchanged. The condition |[K| € 1 is violated rather fastly
end then it is necessary to solve the nonlinear saddle-point
equations. It is hardly possible to find the solution analyti-
cally. levertheless, we want to emphasize that the behaviour
of T(t) dependesg significantly on the gquantum corrections
and is not determined by the claassical phase trajectory, at
leagt, at time %t > t*.

V. The possible interpretation of the
method

Ag was mentioned above, the funeiional Iintegration over
l1 ,12 are similar to the overaging over the random Gaussian
values. However, the similarity was purely formal because of
the complex weight function in the functional int_grals. It
seems attractive to choose the variables of integration in
such a way that the integration ia taken a sence of averaging

of some clageical quantity over the random variables.

First of all, we would like to notice the following. The
golution of the equation (7) for the density matrix could be
constructed as a funetional integral of the form

plo®,xst) =

(35)

: i £ ]
=f Du (v) [ Du, (%) exp { .; druit'r)ulz(ﬂ:)} £,,0% a5t)

b1
By

where the function f12(m*,m; t) satisfies the Tollowing
firgst = order equation:

ot T4t 1 a"z': {[[ﬂ*ﬂ—h'r ~i, (t) -21'|0£|2]m“'-» g(t)+ uz(t}u"}f_'z }_
(36)
- 1 g% {[ [0y ~Bv -1, ®) ~2ve|?) amgt) -p, (0], } =0




It's edagy to verify the statement, if we make uge of the
transformation (12) and introduce the variables p(t) with
the shifted p (%) » p_(¥) + ohy

Equation (36) coincides formally with the Liouville equa-
tion for the distribution function of the nonlinear oscillator
the classical motion of which is described by equations:

1 88 = [0, —hy-u, ®) = 2v]al ] emg(t) -p, (b2
(37)

. do*

1 &5 . [mn_'hyﬁu,lﬁt) -aﬂmlz]m‘+ g(t) = p (t)a*

If the functional intesration (35) could be considered as
the averaging over the random variables u(t) then eq. (7)

would be the Focker-Plank equation for the nonlinear oscillator

influenced with the random force,

Unfortunately, the gimilarity mentioned above has the for-
mal character only. Really, the equations (37) could be consi-
dered as the equations of motion with the velocity dependent
force in the case of the imaginary p a(r)uﬂawever,_we could not
perform the needed turn of the integration contour in the com-
plex plane B, because the transformed functional integral
becomes devergent. Instead of this, we could introduce the re-
al varisbles » and ¥ given as follows:

H1(t)==r(r}eix{r) , “E(T} i ir(Tja—ix(r)

(0gr<w; 0Lx< 2m)

The functional integral will be transformed inti the con-
vergent integral with real weight function expl- %{- fuﬂ'rra(t)
but the equations (37) expressed in variables =, x lost the
gsenge of equations of motion.

Thege remarks illustrate the general assgertion that it is
imposgible to treat the quantum mechanics as a theory with hid-
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den variables.

ViI.Coneclusion

This paper describeg the approach permitfting to analyse
the behaviour of the nonlinear oscillator dynamical voriables
at large time. The analysis is exemplified for the average

T(t) = h(o|a(®)]o).

This value is the guantum-mechanical analogy of the clas-
sical action. It is showvm on this example that the magnitude of
quantum corrections dependends significantly on the character
of motion in the classical limit. In the case of dynamical clas-
sical motion of the oscillator the quantum corrections remain
small, but they increase exponentially with time if the classi-
cal motion becomes stochastic. Thisg meansg that at the time
t > t* (see f£.(34)) the time-dependence of =zction differs sig-
nificantly from the classical dependence if K 2 1. The same
iz valid for the other quantum-mechanical averages.

However, the congideration of the time-dependence of the
gquantum-mechanical averages is insufficient, of course, 1o
clear up the question about the dynamic or stochastic character
of the quantum oscillator motion with K 1. To angwer this
question it isg necessary to such properties of the gystem as
the quasi-energy spectirum and the character of the phase corre-.
lations. The authors intend to discuss these problems elsewhere.
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the ugeful discussions. We are very obliged to Dr. D.L.Shenelan-
sky for the numerous contact at all stages of this worit and
critical remarks.
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Appendizx
We introduce the value I'(tT;t) by the formula

a(t1) +£ dr'a(r'}ﬁ(t';t1)= a(ti}P{T;t1}Exp{i[&;(t1)-oc(T)]}

(M.1)
where uccif} ig the phase of a(t)s It is clear that
P(T—D,t ) = P(t Y & In virtue of (.1 ), eq. (28) is trans-
formed Lntn the eq. (25). It's easy to see that eq. (30) is
equivalent to the next equation

g; r(rst1) = ir(r;t1) é% acpr}-ﬂTIc(r)Iml?(r;t1) (lT.2)

with the additional condition P(tq:t1} =

We represent then the value T(T;t) in the form
r(r;t13= |r(r;t1}|exp {iﬁ(r;t1)} and geparate the real and
maginary parts of eq. (I.2)s As a result, the connection

&
A
|IT(t, )| = exp {EY £ drI,(v)8in Eﬁ(r;t1)} (TI.3)

and the differential equation

N aﬂ? 0, (F) + 4TI (T)SinA(v) (T.4)

for the function ﬂ(T;t1) will be obtained with the additio-
nal condition ﬁ(t1;t1} =

The © - dependence of the function A(t;t1) iz varied
unessentially when duration of impulse T, is changed if
v, < T. Hence, we will estimate the magnitude of |T'(t,)]
with the & - functional form of the impulses (T = 0),
Both o, (v) and T, () are changed at the moment of the
impulse cnly. With the help of the classical equationg of mo-
tion it is emsy to show that the impulse acting at the momeant
sT leads to the following change of the value 0 @
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i

g -1
tg(c - o7 )= tg v = -~ —= Cos &~ [“! - Sin 'B"]
= s s - =1 5
: vIE -
The superscript -, + denotes the mction T and angle

U, Dbefore and immediately after the impulse. For the simpli-
city of notation we omit here the subsecript et for the classi-
cal variables. ;

The equation (32) shows that A= 0 if o, =0 there-

fore the variation of A ig gtipulated by the phase step of
the value a(t). The step of A is equal to that for T,

at the moment of the impulse and the change of A is descri-
bed by the homogeneous equation between the impulses. The lat-
ter may be solved explicity. Representing the integral in the
exponent (31) as the sum of the integrals over the time bhet-
ween the impulses, we obtain

N-|

[*1 Sin ﬂs+1
sin AT
=

sin A7 Y Sin A7
Sin A I-1 Sin ﬂ
5=\

Since the additional condition for A 1is given at
T=t,.,= NP +0 the solution of the egquation (32) should be
constructed from the large < to the small one. Under condi-
tion of stochasticity of classical motion K 21 and for
s 31, N=% XT » 1 the value I of order i gu and the
step o, la emall v ==GGS13 ,/r, ]u |{‘I.A“|: the same time,
the variation of A between the impulsea is large, g0 in
virtue »f (32)

(M.5)

[T (t, = BT +0)|=

ctg A: = ectg A~

b 4?I$+1T (n.6)

and also 4yTI g AK(s41) » 1, As a result, we are found

that A” =~ qn ¥ cos &gfq_ﬂ and that time A =~ qu + ﬁRT%:TT
whenq - integer (g > 0 at y < 0 and q-:D at vy>0Dh
Consequently,

Sin A~
r————— N#Kg.i':lcﬂsﬂ-

Sin A7 \EX
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If we take into account Sin Ay ==8in vy N(gG/'JIN XCos ¥y

and set sin ﬂg ~ /8% we obtain from (I1.5)

a8 i} -
|T (BT + 0} aﬁ. (43)”1414 (-1)t O, Jcos®? |
N

The formuls (31) fOllowr from this expression squred,by
replacement Gaazﬁ -+ g on account of the fact the phases are

rendom, and the use of Stirling approximation for the factori-
al,

Otherwise, if K € 1 the =zction I; r g; at all ti-
me s, the phase step [v_| ~ 1  and the variation of Abetween
the impulges ig small

+ - - 2 -
ﬂ's = J'!'rs+'1 - 4"(TIS+1 Sin Jﬁs+1

Therefore,

=1

i
|IT(HNT+0)] = 1+2yT T I, 8in (2 Ev))

s=0 a=s q
ises |T'| 1is given by the sum of oscillating terms, which do
not increase with time N .

The estimate (N1,7?) 1is checked by numerous integration
of eqe (30). The result of celculation of the value |P(HT}]2
divided by the value given by (II,7) is represented in tableT
for various E,N, The set of random phases ¢ had been gi-
ven and then the result is averaged the 1arge number (10,100,
1000) of such sets. The result slightly depends on the number
of the sets.

As it is obvious from the table I the ratio obtained is
of order unity, although the value |I'|? which is determined
by (1.7) varies by a magnitude of order 10'% (compare with
table IT, where log|T'|?® is given).
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The ratio IP}TDI2 averaged over the 1000 sets

The table I

of Ph&EEE {PS* S:"I‘--',E-
'éQ L 2 3 4 5
{ 2| 1.076 1.321 1.514 1.979 2.646
31 °1.024 1.066 1.635 1.635 2.738
4| 1.0 1.086 1.224 1.759 2.293
5 1.005% 0.936 g [P 1. 117 2s:1473
6] 0.970 0.943 1.300 1.648 2.205
T 1| 0.999 1.034 1.236 1.615 2.492
The table II
The logarithm 1g|T'|?

‘C I 2 3 4 5
| 2 1.51 3.31 h.29 T«40 9.60
3 1.86 4.02 6.35 8.81 11.4
4 2.11 4.52 T+10 9.81 12.6
5 2.30 4.90 7.68 10.6 13.6
6 2.46 D22 8.16 11.2 14.4
T 2'59 5'49 8156 11-8 15-0

PaGora mocrynmuna - 16 ampens I980 r.
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