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Abesetract

The general form of partiasl differential equations in-
tegrabie by the arbitrary-order linear apectral problem is
found. The groups of Backlund transformations corresponding
to these equations are constructed. It is shown that partial

differential equations of the clase under study are Hamiltonian

ones. Some reductione of gemeral equations are considered. In

Particular, the Hamiltoniam structure of the generalisetions

of the sine-Gordon equatiom te the groups GL [fﬁ. Y7 fi"u") and
SO{N) at arbitrary A 1s proved.



1. INTRODUCTION

The inverse spsctral transform (IST) methed allows a comp-
rehensive study of a great mwmbsr of varlovs partial differen-
tial equations {see, e.g. Refs./1-3/). Ths gensral scheme of this
method was discussed in ReTs./4,5/.

All the differential equations to which the TST method is
applicable are united in the classes of eguastions imtegrable by
the same linear spectral preblem., The #imple and convenient dem-
eription of the class of equations which ars integreble with the
help of the secomd-order linear {im spectral parsmeter) apect-
ral problem was presented im Ref,/6/. This cilass of squations
is characterized by the {h-1)th arbitrary functions (n is the
number of independent variables) and by a certain Integro-dif-
Terentlal operator /6,7/. The analegous results were ebtained
for the class of squations which are sssocisted with the watrix
stationary Schrodinger equation /8/, the gensral linear apectral
problem of arbitrary order /9-11/, with the sscond-ordsr linear
problem quadratic in its spectral parsmeter f1gf ;n& with the
general arbitrary-order linear speetral problem polfnomial with
respect to spectral parameter f13{. Within the framewerk of this
approacsh the wide classes of Bscklumd treneformations (Bfs)
which érﬂ playing a signifieant role in a atudy of nonlinear
differential equations are also found /7,8,11,13/. Por equationse
integrable by the second-erder 11hnur_p:uhlnl,.th¢ Hamiltonian
structure of all the equations of thisclass is analysed /14/.

In the pressnt paper we are geimg to study s class of par-
tial differential equations comnnected to the general linesr
spectral problem of arbitrary order:

%—%’ = [CAA +:'P(”sng,...))'$1/ A
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where }\ iz the spectral parsmeter, A the constant diagenal
matrix ( A= G 5;; Byl » J‘;.Et.f}.,? N ), the "poten-
tials® P(Y. J,.) are the matices N‘iﬂ. It is net sqmnd ;?re, in
contrast to pespers /9/ and /11/, that P;;;:-G (t=d.., M)

We f-ind the gemeral form of equations integrable by means of
Eq.(1.1) and comsiruct the Backlund transformations corresponding
to these equatioms. As it will be seen, BTs and integrable equa-
tions are r.‘.hulx comnected to the gremp of tranaformations con-
sexrving 'thu form of spectral problem (1.1).

It ia shown fn this paper that the equations integrable with
the help of Eq.(1.1) are Hamiltonian ones both in the general case
and in the cases when the "pptantialu' satisfy the relations P+—.~ P
and PT" —P . T™e case of the simgular dispersion law is also stu-
died. Among such equatioms there are the relativistic-invariant
equaiions coinciding with the non-Abelian generalizations of the
sine-Gordon equation /15,16/, which, as kmown, are gauge-equivalent
‘to the equatioms of the principal chiral field /16,5/. The Hamilto-
aien structure of these equations for the groups #4 (.-’u"), S’L{f-‘vﬂ
and SO-fNJ with arbitrary A is proved. Por all equatioms con-
gidered in this paper, the uniquensess of the symplectic strmcture
(eimilarly to the case N = 2 /17,18/) takes place.

We mainly use the compact mstrix notation proposed in Ref. 59} .
Let us remind 'fhu: for an arbitrary matrix Q the matrices F
and Q;; are determined as follows: Q) > { soe !0
Q)= Qo at (#K .'."f K= ﬁﬂ ) ( Flte= Thsil 4

5 -._1‘,., N .
@mjggso at H:k: (Hﬁ ,;@ (@z)quu (¢=2.., ,)

The matrix Q_Qriﬂ given br the relstion [ﬂ GQJ Q 3 .i.e.
Qo) ik = o Qe (t#k, ,k=:{',.,,f N).

which comserves the mapping P{ﬁi 4 ){ﬁ '}’(.ﬁ;
limear differential equations (1.1),

The paper is organized as follows. The form of transformations

of the transitiem matrix snd potentials P conserving the

spectral problem (1.1) is found im Section 2. The wey by which the
integruble squations and Backlund transformations sre connected to
these transformetions is shown in mection 3. The equations with

singular dispersion law and, im particulsr the relativistic-inva-
riant equations, are considsred in section 4. The fifth section is

deveted to the Hamiltonian structure of imtegrable equations with

P & algsbrs Gl [M) and Pe algebra SU/MN).

Equations with /5=-P are examined in section 6. Their Ha-

miltonian etructure is proved in the last, seventh section. In par-

tieunlar, the Hamiltonian structure of the generalisation of the sine-
Gerdon equation to the group

S’O(ﬁ’) with arbitrary N is proved,

and the explicit form of the Hamiltomisn is found.

II. The group of tramsformations conserving the linear spectral
problem

Let ws examine an arbitrary transformation 'P‘-” PJ

P '

-.f,).] given by the set of

It‘: eany to see that

5'/ SVK:—“PSQZQISV (B- P)I]V (2.1)

where the constant matrix K is determined by the asymptotic pro-
perties of the matrices-solutionms ‘-V .

P

It is zasumed that P{!H: )—'9 O ﬁt f}ff% o) , Then

rix, is reduced to this by the transfermsations

wa P> exp(~- RX)(P-P,) exp ( Pox.

* The case P(?‘J - P ,» Where J%

X% o0 is the constant diagonal mat-

Y expl-chx)¥
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: . Let us introduce, following to /19/,
ol expiApx o gl
Pandamental matrices-selutions FJ P with asymptotice -—3.
+ - g b Gl 4
and the transition matrix 5 3 F (‘.ﬂff}u)= F {)5{,)1.)5{)}3),
Setting {V: F+ and coming im Eq.{2.1) to the limit X-=-o0,

we get

51’*5’%'~f'§§16{f F(PLRFY (2.2)

Pormmla (2.2) which relates a change of the potentials P to a
chenge of the transition matrix is a basis for our further dis~-

cussion.

! f
Let us suppose that the tranaition matrix at P rD ’ (P":?’ (}u

is transformed as /
5“3’57; BHS’C (2.3)

where B and c are the diagonal matrices independent of the

f
variable X . Rewriting Eq.(2.3) in the form § —§'=(#-B)9'-S(1-¢)

and comparing it with Eq.(2.2), we have

[s7-8)5"sF :_f’jgd“?/ﬁj{fp}"))?i F, (2.4)
- ; <) ‘e
{g'f(f-B)S‘}@-hC--—f‘_:fr[x{ﬁ'*(p{_p)pa* o (2.5)

It follows from formulae (2.4) and (2.5) that transforma-
tione (2.3) are givem »y the matrix E which can be arbitrary.
Matrizx ( is determined by equality (2.5).

Taking into account the relation

{st 3)5"},.- = vjdx-@% {pl“({{-g) pijZF 2

" {Ta’x pif p(e-8)-(1-8)P'S F{}F

we got . ;
1_%#}({;@--,[ iP-PB) FI-J(F: s

Rewriting Eq.{2.6) by components and introducing the notatien
= an

Bit = )i Pen o wo vave  ( Bic()= Biln)3ix)
Q}( 2/ ( Bt Pre (%) - Bo(3) Pl (,5,,.,)) @E?% N
B sl -

(t$n, t,n=40y ¥)
Formula (2.7) contains the product H()\) @ﬁﬂ(} whick is
given im & local menmer, at each point ;\ of the bumdle (1.1).
The spectral problem (1.71) makes it pomsible to transform this
local product inte the global product determined already om the
whole bundle.
As sheown in Appendix 1, in s space which covers zll the non-

£ ) :
diagonzl quantities i ¢ ((;&p; kqﬁéﬁfﬁf{’n:{..},‘.’} the rel=stion

7 o B

" holds

*

L) . B e
Ag CPF o >\ (P,r_j s

f;n:l;u} —‘IV‘ [E.EJ

where

AP=(22 + (9P~ By®),-
- %9 {dy 819) (913) B'9) - RL9) 919) Prel)
v OB dy ) (9U9)PL1) = BUs ),

Here and below -Pr gtands for the transposed matrix P « Thus,

for entire functions B.ic. { }-) B Sk
= ) X n)
' % {gk {Aﬁ)}j{ﬁ?/p ?P e gk !/)\) KPI{F L4 1 10)
/

@#p)
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By wirtuwe of this, equality (2.7) may be Iritten&ntm}onu must ex~
tract the contribu.ion of diagomal quantities ajk K and take
into acecount Eq.(41.3))

?dk S E {Pze ('-‘){gx (A1) _}zeqp xe("‘){gemﬂ)}m?p}

ﬁ#p} &#"}

(SRR B %m)i S{ R R, Fereery

- Fpn(b’){ Be M")}P””? (M}}}}
where A(-"*)= ex{o ﬁ;iﬁig(ro@{?f)_ ,;.(B’)_),

Integrating Eq.(2.11) by parts and changing the order of
integration, i.e. making the trensition from the operater A teo

{m)

4
the adjoint operstor A , we get

5633 Bor ) ({ B () mgue Pee D

€2.12)

{gem)}we Pre L )= <

. A.f@:_{%ie (PP~ PH P,
_ A g"};g Kty ( Ply) Pits)- Rels) Ply))p P (9 W

PO RO | dy £13)( P4) Pe(9) = R(®) ZO)

Formula (2.12) is s relation between f phos o Progagip!
in the transformations comserving the spectral problem (1.1). Equa-
lity (2.12) is fulfilled, if the expression in parentheses is equal
to zero. Hence, the tranaformations P'* P‘ commerving Bq.(1.1) are

of the form

;r (’D/B {Aﬂx}m.ﬂk? Em fﬂ {g ﬂ }mnﬂ . J= ﬁ- (2.14)

(278 m=n, mn= L. r‘v"
Hemind that 5 {,‘k) are the arbitrary entire fu.nctians

Transformatien properties of the transition matrix are de-
termined by formula (2.3). The transformation law of 9 can be

represented in a more explicit form, Let us write out Eq.(2.) as
] o Pl o F
S—S:-a§I+§ﬁs {1'-5)5'},: (2.15)
where + = ¢
& Qf{ﬁ*(PLP) F+¢,
- Bl E
With allowance fer the relation (see Appendix 1)
oy fin} f -4 Sl: nn
= + /
- Afiea) A E(F) " gk PTF”‘)}E

(2.16)

we have

Lo = Jff'-’“l‘{ PL-P) (AN (Prre(ﬁ)ﬂfm)x& DY
- Ble) B 00F™ P, fﬁ)}+ fdx r’?{(P - Pf’ﬂf)[ﬂfmmxj B

(2.17]

STRON Jgf (Ag-)) /EF fﬁ;d(*w‘ﬂm? A[ﬁ*)ﬂr’a')éth r’a))Pa’;rﬁ

i d

"Pi‘f:'f)(lin ‘)') {Erm@)d to1) A frr‘r".}‘g_ﬂ" ;j(m)ﬂ[gjﬁtwl?rmf#ﬂjj :

Hence, transformation of the elements of the trsnsition mat-

rix is determined by the following relationm:
_ S O ey oty b M - L
g{_ =20 Sl S e (-Be)\ Son =t Tp0) S}y t2:19

a}n: .{.,J N.



je given by formula (2.17)s

The fairly complex transformation law becomes aimple, if

where nn

the following egualities are fulfilled:

FESEY B - (S 11-B)S" fun 14, ¥ 219)

C = 8 ; (2.20)

In <kiz case,
: f = i
-:ﬂ*" : = 0 5‘ 5 , (2.21)

-+ snould be meantioned that the disgonal elements of the mat-

!

riz , are invariaat under the t+ransformations (2.21). In the

generzl caze of Eq.(2.3)

ol
i L g,m (h=1.,¥) (2.22)

o I P!’
y,

The set of all transformations of the form (2.14) is given by the

Jan

set of all diagomal mairices B()}. Therefore, just as the set of
diagonal matrices, transformations (2.14) (conserving the spectral

sroblem (1.1)) form the infinite-dimensionsl Abelian Lie group D

the "parameters"” of which are arbitrary functions BE? (ﬁn) ({"’-—-},n—, ).

III. The general form of integrable equations and

Backlund transformat iona

1, The infinite-dimensional group E) of transformations
(2.14), under which the gpectral problem (1.1) ie invariant, con-
tains the transformations of various typea. Let us examine the
one-parametric subgroup of the group B , which is given by the

matrix

10

g

BO)= €xp(-¢;(f‘--{)Y/A}j

(3.1)

where Y(,\) is an arbitrary diagonal matrix (and Cr,g ). A8 It's

eas
Yy to see, this group is a group of time-displaycements:

SB Y= S0 ¢)=expiult- r’)YfA}s‘m)exp{ (DY) )=
(3.2)
el

Inversion of the mapping P{H 1!)-—3- 5’(}\ 71) induces the corres-
ponding traneformation P[}t t‘)-% P (hf t()_ P{K f) + It is of the

[@:ﬂp( ((¢-4) )] (Aﬂ))FMNPEMME
{Q'KP( (¢~ {)Y(A“}mnw Eﬁffx*)ﬂ€:0(.3'ﬂ

0
pemturﬂ AE are given by formula (2. 13}, in which one should

% o ¢
put P (3‘;{)-— P{Jﬁ 11). For the case N = 2, the relations of
such a type were found in Refs./7,8/.

Fo
rmula (3.3) determines inexplicitly the evolution of ""f:fi

in
time £ ; P{')f :i)-ﬂ.r P(’x {"') Let us consider the infinitesimal
displaycement f*% L il £ O

g

P(x &)= Plx{+c)= Pxt) + € f-%*f’,.a%ﬁ

Th
en, from Eq.(3.3) we obtain partial differential equations

B, (40 > | .
= {hn, Wy i@{-]m*‘zfﬂ B e 5.

F

RTEe |
. VSNt (m#n, mnr=1. w)
Tere L+= A-P(Pi: ,D) y l.e. .

11



f 5 X .
f¥= *’:‘53}? = [ PO, = | R1¥ gﬁégfp‘fb’] TJEJ by

Correspondingly, ’
_ﬂ'/_d%@i). o [Y(}«)} S()}lz)] (3.6)

Partial differential equations (3.4) are just the equations
integrable by the inverse scattering method with the help of the
linear spectral problem (1.1). Using the IST method equations
(Gelfand-Levitan-Marchenko equations), one can find a broad class
of sclutions of Eqa.(3.4) (mmlti-moliton solutions). At A =2
and V;. - 0 we have equations studied in Ref./6/. Some concrets
equations ~! the (3.4) type with ;"ir 2 are well known. The model
of resonantly interacting wave envelops /19-21/ correspond tc
linear functions ‘]/r {}.J {Yef;)-_%,)\ y P= 1'}..,} A ) and the multi-
component nonlinear Schrodinger equation /22/ - to guadratic func-
tions »,/E(,r’\l' ( \f/;:-‘ t";*._j: = Yg : }-‘2 ). Ecuations of the type (3.4) at

f (A) YE £k : will be examin-d in the next sectiom.

A broader clasa (ihan Eq.{(3.4) of integrable equatioms ap-

pears, if .D (a8 in the -~a=e /| = 2 7/ depends, in addition to

/ , on a few variables .’ of time type. Examining the * -
and ? (6 P=¢ {/ﬁ.ﬁ + JKKAJJ’)"; }- infinitesimal displaycement,
we get from Bg.(2.14): 'j'

?&fﬁﬂ -3 1 }7’(1;})1{,5)}%“%%5 N
+£{[@(a{_%ﬂ_;§a’z_&i‘if{{ H(LE [P(x-éy Ezmﬂjg (3.7)
STV (g 17) - Vel T hmaee Ree = O
‘f N

12 m¥R, mn=2..

Thue, the class of equations integrable by means of the lin-
ear spectral problem (1.1) is characterized by the intagru-diffareu—

tial operator ]_ o and N+n-3 arbitrary functions H (}.
%{A’{ {g)-\ﬂ_(,l}ﬁ ) [{:’fgélj ,*-.‘.f)( i1 is the number of independent rari—
ables).
In the particular case,
YH)=SL0)Y :
where Y is the constant disgonal matrix, ,_QJ(}\J an arbitrary
function, Eqs.(3.4) may be written out in the compact form:

B [P T - (LY Rl=0 6.

% 2 %{5— H[E F]"‘L'—Q‘F(L})[\G P]:O - (3.9)

2. Let us now attract our attemtion to the fact that, by
virtue of Eq.(3.2) (or (3.6), the diagonal elements of the transi-
tion matrix are time-independemt:

=y
dSo(s) _
cws ) sy o (3.10)
Hencs, S’nn[ﬁ) (,g Lo, )ar- the generating functionals of the in-
tegrale of motiom. Expand:lng 6‘1 S{ﬁ[) as ususl, in s series of A

€R 5'[}-) E Cm) » (3.11)

we obtain the infinite series of the integrsls of metion
{Cn) s af.’;." nﬁ} C(k} are the diagonal matrices with ele-
ments Cm 3 = ;{’ N ). Expressions for. Cm) in terms of

P( Jf,'i') may be fou.nd through the use of the procedure proposed

-1
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in Ref./19/. Let us present here its scmewhat modified form.
+
Let us represent the fundamental matrix F ag follows:

Fx0)= ROV EGN expf Saygn}f  ou

where E is the asymptotic of the linear problem (1.1), J({g}}t)
the diagonal mairix, and the matrix E satisfies the comditiom
Qm= 4 ., Prom Eq.(3.12) we have : -

Cn S, 5)= _jalg @) . (3.13)

Blhutituting Bq.(3.12) into Bq.{(1.1), we find 1
W '”f/\[ﬂ A] R} -tPR=0. (3.14)
Expanding } and R in asymptotic series of )\'i
g D P ([
YsN= = 55 5%,
- < o me’() (3.15)
REN=1 + 21 7)r
we obtain the recurrent relations
() P) -p :
_Q—“‘*’[A Qm*‘J] jm) zﬁf f ) g ¢80 s
2 (3.16) “&
7

: o RN ©)

bl il Sy

It follows from Bq.(3.16) that ' é
ftb}: £ ‘:/f:){":j _\fﬂz}z_ .{(P Rg})@ ﬂ:io? wr (3217)

and RFIH determined from the recurrent relations

'3:2”” > [A ijﬂg,g@{pw)m (P + R P=03.18)
n=4q..,

14

(1)
e PFR :

Formulae (3.17) and (3.18) enable us io caleulate all integrals
of motion, which, by virtue of Eqa.(B._ﬂ) and (3.15), are

Ct"ﬂ) f‘ o f/n)(}{)

Hote, thagl/dll equatione of the class (3.4) the integrzls of mo-

(n=914.. ) (3.19)

tion C{ ) are of the same form, with an acouracy of the concrete
reductions of F *

3. Each concrete equation of the type (3.4) is characterized
by & definite matrix Y()) amd, correspendingly, by a definite form
of the time dependence (3.2) of the transitiom matrix, It's easy
to prove that transformations (2.14) with matrix B ., which is
independent of + end ? , conserve the form of the time depen-
dence of the matrix S . Hence, they tramsform the selutioms of
an equation of the type (3.4) into the solutions of the same equa-
tiom, i.e. these are usual (zmto-)} Backlumd transformations. The
group ©f Backlund transformations contains the group of transferm-
atione (2.21) as a subgroup. These iramsformations do mot change
the diegonal elements of the transition matrix (amd hence, the Ha-
miltonian) and, therefore, form am infinite-dimensional greup of
sysmetry. It may be nhﬁwn that the integrals of motion (3.19) are
cmuc-l:ud just to these groups of eymmetiry.

We shall refer the transformstioms (2.14), which change 5(;1#(}}
(i.e. C+ 5 ), to as Backlumd iramsformaiions. Similarly to the
case N =2 723/, the infinite Abelian group ef Backlund tra;mfor--
ations is a direct product Bc@ Bj of the imfimite-dimensional
continmuous group 8(; of contimmal Backlund-transformations and
the infinite discrete group Bd of soliton Backluud trinsforma-

15



tions. The group B-{' includes transformations mot changimg the
pumber of zeros in the diagonal elements of the transitiomn
matrix, Solitom Backlund transformations are the transformatiouns
(2.3) chenging the number of zeros in S:Erl(}*) and, hence, adding
ome, or several solitoms to the initial solution. The structure
and properties of Backlund transformations &t N=3 will be
congidered in considerable detail elsewhere.

transformations (2.14) with matrix B, which is dependent
of £ and (or ) g-_) , are the gemeralized Backlund transforma-
tions (for the case /V = 2 see Ref./7/): they change the form of
the time dependence of the matrix S , thereby converting into
each other the solutions of different (with different Yo and H )
equations of the type (3.7).

Thus, we see that the one-parametric groups of time displayce-
ments, which gemerate the partial differeniial equations of the
type (3.4), the symmeiry groupe of these equations, the groups of
Backlund transformations and generalized Backlund trsmsformations,
they all are the subgroups of the infinite group of transforma-

tions conserving the spectral problem 1),

IV, Integrable equatioms with singular dispersion law.
Relativistically-invariant equations.

~ The matrix Y(}.) coincides, as 1it's easy to see from Eq.(3.4),
with the dispersion matrix of the linearized aquatiun (as in the
case /N = 2 /6/). Por entire functions Yg ().) the explicit form
of integrable equations is found by direct calculation.

# Here and below we shall consider the equations with two

independent variables X )1{' .

16

In the caf: of the singular dispersion law (for example,
Y(i,):'—'(}t‘ :\GJ \1/ ) we apply the method proposed in Ref./14/.

Let us consider the equation of the form

W ., as FelYp
.?_?.E_H[P}FJ-‘{(LR-M)F[%PJ:O (4.1)

where ;7 1is an arbitrary integer positive number. In Appendix 1

‘Pw] [ (")YJ

(e et Z’Y
ﬁ'Y __3 L -1
r . =F"’ YS L. ﬁlx;{,){) e ke

Taking into account that

we hav: s
(Lm“)‘ ) [Y) P(HJ]: '[A,, [1: (",-‘(;/\}] (4.3)

_ 111 : "
(Le-3o) Y, Pt 22

Thus, the equation (4.1) is of the form

gp’:-r-ﬁ[—PF] (ni}*’[A Br;gi )L___J:O,u.s}

By virtue of the siugularitr of the dispersion law, it is re-

quired (for the case of /¥ = 2 see Ref./14/) that

1" 1
5}:(}\{]): 0 y (406)
!l'hertfure,

_ I .
(X‘f o) = F x4 00)Y F* (%ff,f\_"), (4.7)

17



|

The quamtity [/(X {j,\) satisfies an equation which is easily
found from the formula (A1.1) and definitioms (4.2). It is of

o aeesfA T+ P AT

Solving Eq.(4.8) with respect to ﬂ end substituting into Eq.

(4.8)

(4.5), one can find an omtion which is satiafied b;r P(x {) E
Let us examine the casoc when [{ = 1 and )m = 0 in lure de-
tail. We have (since [A fzgj- 0) ’y

@&+¢[PF]+L[A IG4a]=0 .,

'Ehg(rt 19 _ [ pixt), (x49] (4.10)
X :

By virtue of Bq.(4.7), "
+ + '
[lxt0)= F{x49Y F*(x%0) 1)
and from Eq.(1.1)

P(xf{') =« FOY ) gpﬁ:@) : (4.12)

Bquation (4.10) is satisfied identieally, by virtue of Eqa.(4.11)
and (4.12), and Eq.(4.9) is of the fom ( F¥= F*(x{ o) -

5_{_—_6:4-%?)!: +L'[F+:§f: F]-F[A} P+Y F’; J= O (4.13)

Bquation (4.13) is invarisnt uwnder Lorenz tramsformations

x> K"=_?)r -f—-n:f x’ (X { are the cone varisbles). Alsoe,
1t has the invarisnt group sense -h-r- F* € the local grewp(s ,
and t’.‘ F+%B= P & the slgebra of local greup Q .

X
st Ne2(B=0, Bi=-P) Fq.(4.13) is the sine-Gordon

18

“squation /6,14/. At /V?..B it is the gemeralisation of the

gine-Gordon eqmuation to am arbitrary greup Q , and it was con-

sidered im Refs./15,16,5/ for the first time. For s full accerd
it {a—-ﬂ{x{)&@ .

with Refs./15,16/ one mt put F"'-(ﬂ )., -

?)ft ) [%d?u igu)] [A u YZ{] 0410

In Refs./S5/ and ;'16;" these equations have bunlshm to be gauge-
chira
equivalent to the equatioms of the prinmcipal’field equations in a

space of Q/ H (lhnﬁ /'/ is the group of diagonal matrises).

Thus ,. among the equations imtegrable by the speciral problem
(1.1) there are a broad class of relativistically-invariant equa-
tione (4.14). Backlund transformatioms for-these equatiomns are
given by relatioms (2.14) and the cmi.mtinn ‘laws = by formmlae
(3.17)=(3.19) (witn P=0%U %{- .

Equations (4.14), which are a generalisation of the sine-

. Gordon equation to the general linear group GL(hj allows the

natural group reductions:
Y) ‘the Teductien’te the gromp S UMW) -

U UKL= i A=A Y=Y (Piyy= PM)) (4.15)
2) the reductien to the greup SO{N)

Urlst) U= 1 (RG]~ Phag wae)

and ri'A and L"Y are the arbitrary real diagonal matrices;
3) the reduction to the group ,S’P Mo ( VN 1is even):

ﬂT(ﬁf)jﬂ({aﬂ:y; | ﬂﬁffﬂz Y=Y [ (Q,.:'.'H’ﬁ) (4.17)

19



|

where j is the antisymmetric wmirix which may be chosen, for
cxample, in the form = (_‘} }E) ( 1 is the unit matrix of the or-
der of My ).

The reductions (4.15) and (4.16) have been also examined in
Refs./15,16/.

The reductions (4.15)-(4.1T7) also-tske place for the equations
with non-singular matrix Y.
4t even J/ it is of interest the case

S L 2 e

where L}’ ig the matrix of the order of #/2 . Under fulfilment of
Eq.(d,..‘lla} the linear spectral prot’em (1.1) is equivalent to the
system ( (/= ( j) , { and V have % components)
Ly 2
'%';:E + Q(x YOV = )"V (4.19)

Equations integrable by means of the spectral problem (4.19) have
been considered in Ref./8/.

In the general case and in the reductions (4.15, 4.16) the
Hamiltonian structure of Eqs.(3.8) will be analysed im the next
gections. For the reductions (4.17, 4.18) this analysis will be

made in a separate paper.
V. Hamiltonian structure of integrable equations

It should l;e mentioned, first of all, that Egs.(3.8) are
gauge-equivalent to the equations which do not include the term
[P f-'_] Indeed let ua make the transfermation (,D-atff
_Q};P g(l-j (g)u,f . In this case, the spectral problem (1.i)

is tranafnmed into the system

20

where

Bexpl s 6.6) P exple (44B15) - B=expleflybi) hopl re)

Equation (3.8) is converted into the equationm

%f‘ ~ ¢ ,_ﬂ,( [Y P]"“ (5.1)

"'h..
where the operator L is given by formula (3.5), in which one

Ehould make the substitution P-‘?Jﬁ and take into account that
Pp‘:fﬁ ( 0) . Of course, the results of the preceding
sections and Appendiceu (with simplification Pm = 0) are true
for the equations of the form (5.1) and operator L

We are going now to prove that Egs.(5.1) (which are gauge-
equivalent to the equations (3.8)) are Hamiltonian ones at arbit-
rary i ."

Let us first consider the case of the genmeral position and
reduction P+:P . Por the sake of simplicity, for the non-singular

dispersion law let us confine ourselves to equations of the form
™
-+
o *-*f(L) [ J':O (5.2)
D¢ R/F \/J P :

where /I is an arbitrary positive integer number.
Prom Eqs.(41.13) and (4.2) we have

[4 figen] = O0-L) Ty, Pow] o

+ ®he Hamiltonian structure of Eqs.(5.1) at V= 2
is analysed in Ref,/14/ in considerable detail.
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Expanding either parts of Hg. (5.3) in the asymptotic series of
)‘_ , we find

lj ’ [y, Poxe] =LA 1T 6’“”(:: H]
where

1 =
(x;ff)‘)“’fl B¢ nm’}hﬂ%)- (5.4)

h=o
On the ether ﬁ, 41t follews frem (2.2) that
"+i?nm)
B_gﬂ Sfmm ==t S‘dxz S.PKE
& S'mm
P

where O P 18 the arbitrary veriatiem of P .

(m=1., V) (5.5)

iy st VS i S
[T1(xEN)= ¢ 5P b ) (5.6)

where E]s‘p is the variatiomal derivative and ‘£2 denotes the
matrix trace. Taking inte account Eqe.(5.4) and (3.11), we get

mJ 4 = ‘ 55:%(0{%)) (5.7)

where C"’} is the disgemal matrix of the integrals of lutiu.

Hence, aquatien (5.2) may be written as follows:

%-E + [AJ ig =0 (5.8)

where Hn = {’Z(YC'?H}"D. In the case of % = 0, the amalogous

result was ebtaimed in Ref./9/.
Bquation (5.8) is of the form

%% B { PN; Hn} | : (5._51

22

if one gives the following Poisson brackets ( [ [p) . H{p) are
the scalar functionals) '

{34~ Tah(ZE [, E]) o

The quantities P and PTR. form s pair of canonical (matrix)
varisbles. The results obtained here are also valid at P =P :
the pairs of canonical varisbles form the quantities located sym-
metrically in respect to the diagonal - they may be considered as
the independent ones.

The Poisson bracket (5.10) is n.nt the only bracket correspond-
ing to Eq.(5.2). Similarly to the case when N = 2 /17,18/, the
infinite set of .sympleetie structures is associated with equa-
tions of the form (5.1). Let ws comsider ﬂl-fnllﬂing Poisson
bracket '(for N = 2 see Ref./18/):

{1; H}m = _Z&(X {‘2(% E:[A; %:D o Ga)

It is easy to see that Eg.(5.2) is of the fom

i? {P Hn m}m | (5.12)

where /7 is an arbitrary integer mumber. Henea, tlu infinite smet
of Hamiltonian-Poisson bracket pairs correspend to the comcrete
equation of the form (5.2).

Let us prove the Hamiltonian structure of Eqs.(5.1) with

= O\ p) _)hn » Prom the relatiom (5.3) we have

& 1N :
(L %) [y, B]- m—i—-),[x:] e S L
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Taking into account Eq (5.6), we find

ra}."_f," gn—i[‘&ﬁfﬁ)
2¢ T ‘EP Q i)’Y Pyt . )Ar}mﬂzo - (5.14)

Thus, equatioms (5.1) with . J], ":()\'}\c)-fwhiﬂh are gauge-
equivalent to equations (4.1), are Hamiltonian ones with the
Poisson bracket (5.10) and Hamiltonian

220 Sy
_Hn (ﬂ i,}" .Z-?(Y 9)\_,2_13 AL:AG) : (5.15)

In particular, Eqs.(5.1) with J), = )\'i , which are gauge-
equivalent to the gemeralisatioms of the sine.gordom equation

tc the groups G—L(N) and S’H/ﬁy (see the preceding section),
are Hamiltonian equations., The Hamiltonisn of these equations is

H: t2 (Y En 5;("")) : (5.16)

Expression (5.16) may be transformed as follows. From the rela-

of the form

tion (2.2) we have
§_ 1 -=~¢;£dx exp(—s’)\Ax) 5(}54) E*{xj é}.) (5.7

Hence,

éns, (0) = &{i 'ﬁﬂ)'ﬁ%-’-ﬁbﬂ 4 ﬂ)} (5.18)

*  The Hamiltonian structure of Egq. (4.14) under the group 9“/2)
was proved in Ref./5/. In our work /V is _arbitrary. Hute alseo

that the transformation PsD= explR)Rexp(R (o= faly B(y) »

for Eqs.(4.14), which, as we have seen, is the gauge transforma-
tion, has been considered in Ref./16/.
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Thus, the Hamiltonian (5.16) is

H= tol a( 1+ Tlbe-s9)- 2 (v )} 59

A b
where ﬂ{-)f, %) = 7% {}i’{f 0).

In the combined ceses whem Y[)\) contains the singular and
regular parts, the Hamiltonian structure of the equations is

proved in s similar way. )
It should be mentiomed that the integrala ef motion C

(Ni= 1,24.) of equations of the form (5.1) are commected to the
form-invariance of these squations with respect to the transform-
ations which in the infinitesimal form are the following:

) : 4+ -1 e
5 Pot)=-€[ A TC —e(I)ETY, Pyt
n ) [ ER), e 4%‘”;
where & is the diagomal matrix (ef the order of N ) of para-

meters.

¥I. Ths structurs of equations at P == P

In this case, nmot all the variables &g &re dynamically
independent. For this reason, the analysis of the foregoing

gections should be modified.
Let us introduce the upper triangular matrix Q with

geros along the diagonal, such that
P= Qe Q*r (6.1)
i.0. Qre = Pue at e>K
Qre = '®) at e<i

¥ow, let ws transform Egs.(3.8) in such a way thati they
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contuin only the independent dymamwicsl varisbles (3 ..

'ﬁ this =nd, we rrl:n:m to Bge.(2.T7). They may be written
ot B=d-ieY e Ps P+E%ﬂ (zee (3.1)-(3.4)) in the
foltowing form ( & U -(F*)m(f:*)en)

!’“fJ
?a"x {‘z{( ¥ P] LQ{}") }" . (6.2)
Substituting the definitiom (6.1) inte Bq.(6.2) and using the

propsrties of the trace, we obiterim

;ﬁi L 9@;- &j&n) m [YG]' :ﬂ,()( i) qj*m))} oo

(¢ )
Then let us imtroduce the projectiom operations /), and A-

] {Z e zp_’f at > K
(Z J __{ O at e>K
whrrrz i an Erbitrary matrix with serovs along the diagomal.

It is slear M5=25++24.J Zdidfzd-s_- stwee Oy, =@ :
@1—&4‘-'0 @1—5,_'- @,— Eq,(6.3) is equivalent to the fellowing

fd)( {‘Z{BGT )fw- i[Y G’] ,__]L[)\) L//;m}:o (6.5)
T S - S

Bouation (6.5) alresdy comtaine thw imdependent verisbles only.
Hemoe, the transitien from BEq.(6.2) to Eq.(6.5) ie the projec-
tien onto tha subspeps of independent dymsmical variables.

*  The results of this sectieon are true for the mors gemeral
case of Bgo.(3.4).
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Tire first term of Eq.(6.5) can be comverted into the foram

wirich comtains V) instead of Yp, . Let hs define the quanti-
ty W(x t) h;r tha relation

29 - ‘@M (6.6)

where QJ+ is the "covariant® derivative:

D =§-%--c}:9 O, - ],_— +L[@ Q’}:{FT (6.7)

Paking into account that %%I:;Dé_ T ; imtegrating hy'perlrtl
and uwsing formula {AE &), we find (assvming W(x- =0 )

jia(n“z ( 26k ”’} ) ﬁhh( W D j"‘“’")
= i m{z (WT{“ O[A, ¥¥T)

Aa s result, Eq. (E 5) is of the form

Sa{x tofwinlA, ¥, “I_Iy 01,909 § Peleo

(Hﬁfi)
where we put (J),(h) = ) c,u(‘;,-i) » because at F;,t-P L_D_.[A)
should be the smtisymmetric fmetion )\ .
In Appondix II it is shown that the follewimg relation
bolds im the subspase stretched ever m”

Lﬂ) *+en) 23 9 FHLD frv s g
aﬂq.ﬂ. ﬁ_" e >\ _ﬂ-p @*ﬂ) {6.10)

{6.8)

fl{/:_@-‘;"a;ﬂ SU+£$+[@J§%@*QI}VJ$JE ~(6.11)

Therafore, Bg.(6.9) may be writtem as
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Finally, making the transition from the operator ﬁ As to the
ndjuint operator LW and taking into sccount the equallty

?{'Z(WT[IA %:_D:' {’2('## }:A ‘w]) , we obtain

_ga{xll”a{ yen) [A W] w(ffm } D(6.13)

where
+ X '
f) . 'J)-cﬂ)lpf —Z[G(FJigfﬂg[Q-@rj MJ ] (6.14)

Equality (6.13) is fulfilled, 1r

[AW]-w(E,)al=0.

Using (6. 5}, we obtain the fullo-:lng differentisl equations {.‘Dﬁﬂ)‘v

9% = B et BL )[\{ Ql=o0 . @9

fhere is ne difficulty in sesing that Eq.(6.15), which contains
Q only, is equivalent %o Eq.(3.8) at P = - P . A% )V-z
;D;—.% and Bq.(6.15) coincides with equations considered in
Ref./14/.
For singular fumctions ﬂU[}\l} of the type

WY =O\2~ }\j'_)-n (6.16)

we use the analog of formmla (4.3) which in our case is of the
form (see Appendix IT)

% -1
%LA’ Hat;é)q:( }mn" Xz) DG Gj (6.17)
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w;hars

'*'*mwl

[1,(x4%)= ZY

5“ - {(6.18)

Hence,

7 % _ n-1 fg {y“y
{ oyt R 7 2-__ Wi 4\
l" ﬁﬁ.a ,}\c) [YP Q]: -@” [AJ 2 [,\i)fz—i [h"'hc:l’ (6.19)

Thae, the equations with the diepersion law (6.16) are of the

fﬂm n-i a(x.1A) ;
ABEAE
@% vﬁ?’ij t ?0\ = Nz e

YII. The Hamiltonian struciui: of equations

at PT:"ID.

="0.

(6.20)

Equations of the type (6.15) contain only the dynamical

independer;: quantities and admit the natural Hamiltonlan struc-—

ture.

Let us f:l.]:‘EH‘ conaider the aquatiann of the form

2 _, g, (EL)D0=0. v

Prom Eq.(2.2) {(see also {5.5)) we have
“Himim)

§Cn Spm - (o b2 Qra. —F= ) .

Hence,

ey r
Talst)= ¢ Sagy (Yl S0). g

Expanding the left- amd right-hand parts of BEq.(6.17) in the
-1 .
asymptotic series of A , we Tind
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@LQJH[\( Q:( 3e, T‘;.'[A; ”&{£n+i}_],

faking into account Eqs.(7.3) and (3. 11), we obtain

(E}LE )n[\rj Qj}%f_ﬂj 50 t2 (Y C@n”)j (7.4)

Hence, Eq.(7.1) may be written as follows:
9@ e __ }? (-'211+i) sk
= 35+[A 1?‘2 YC )]-—- O . (1.5)

It is obvious that Eq.(7.5) is a Hamiltonian one. The Poisson
bracket is of the form

{l; H} '=_+§an¥ bef £ 0®5+ 14 ]j (7.6)

and the Hamiltonian is equal to _ _
: | ( C (Zr+i) )
Hijes o Te 0t 5 (7.7)
It is clear that for the equation

Eﬁ “fof’f)m C,O( . J[\g Q]: O (7.8)
where Lu()if) *:Z_L." Wy (}F) » the Hamiltonian M, is equal to
Ho=% v (Y? wgpc"’”*‘*‘) ‘ (7.9)

Just as in the case of the general situation (see section V),
the infinite number of Hamiltonian-Poisson bracket pairs is
connected to the equations of the form (7.8).

Let us proceed now to the equations with the singular dis-
persion law. Let us prove the Hemiltonian structure of the equa~-
tiom

B

Qjm( [© ) [Y Q=0 (7.10)

L ilar way. From Eq.
The case (U= C,x-'l_) ip analysed in a simila y

6.17) we have that

?3{ S 1) ¥ ):A ”a(“‘}*) jk:(—o (T.11)

By virtue of Eq.(7.3),

loli2 |, = {7 Malst Mo =
= f«% £ (Y{’E}T En S"‘“(}‘)}!A:o) -

Hence, Eq.(7.10) is of the form

=40, H} =t
where H - :% {E(Y% €fz S:w(o)) (7.14)

and the Poisson bracket is given by formula (7.6).
It's easy to prove that Eq.(7.10) is equivalent to the

S‘O{@-Gﬂ*ﬁon equation (the sine-Gordon equation under the
group SO(W)) which has been considered in section IV, Indeed,

(7.12)

taking into account (hx virtue of S' ()\ 5‘) € ) that
¢ mm)
[lg = %; Ym A+

and using {32 4}. we find

08 +—-*[A ”m,r ﬂh__ (7.15)
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where fi is given by formula (4.7). Transposing (7.15)
and substracting the resulting equation from (7.15), we derive
Bq.(4.9) where P= -’_Q—QT.

- Thus, we have shown that the f; Gfr'-j—{%ordon equation at
arbitrary N is a Hamiltonian one with the Poisson bracket
(7.6). Let us reduce the Hamiltonien (7.14) of this equation to
@ more explicit form. For this pu.rpnae, we use the identity

LF{%)JAF&H}-{AS'*,M BF{X‘*“)F( H\)—{AS (7.16)

P))

which is obiained directly from (1.1).
We find from RBq.(7.16) that

'_5% g}z STM f{{}l{ {0‘_- _+),rrm ot Ar’”ml(f (7.17)

(M=duy )
Hence ftakin,g into account that Se(li=0)=0 ),

Ho= ﬂZ’}jﬂ én Swm(0) =

Hi=r1
"y %z(AF*f%ﬁﬂ)YF“?WJ AY) .
— 50
Denoting F;f(x' L o)= f{f)t {)(see section IV), we have

= i— fd}c f*z(/qﬂ YU - ﬂY) (7.19)

In this notation

- WU
Q = (’Z/(T '@‘;")j* _ (7.20)

As we have alresdy noted, the Hamiltonian structure of the 50(3)-
Gordon equation has been proved in Refs./15,16/., The Hamiltonian

in those papers coincides (with an accuracy of the transition to

cone variables ) with the Hamiltonian (7.19). However, the ca-
nonical varisbles are different. In Refs./15/ and /16/ the
cancnical varisbles are natural coordinestes of the local group

90(3} . In our case (as it is seen from Eq.(7.20)), th
natural coordinstes in the local algebra 90(?‘0 play the role
of canonical coordinates. The situation for ‘thaf;f..- {Pﬂ-{}urdon
and S'H{,@-Gnmon equations is similar (see section V).

Fote, that by virtue of the gsuge squivalence of the G -
Gordon equations to the equatioms of the principal chiral field
over the space of flags /16,5/ the latier are Hamiltonian ones.

In conclusion, in should be mentioned that the Langangian
structure of some equations comnected ito the principal chiral
field and namely, the four-fermion type equations, has been
proved in the work /24/.

The author is grateful to Dr.P.P,Kulish for useful dis-

cussgions.
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APFENDIX I Prom Bqe.(A1.1), (41.3), and (41.5) we obtain

In this Appendix we shall obtain seme relations which in- @?J e ;)\ [Aj @T}] +
clude the quantities @Eﬁ = [H’fi).:'x ({Pf)éﬁ and integro- §25 : = S ; (41.6)
differential operators AJ ﬁ") L}, LT T s PTF(}{) ﬂ(foﬂ) ﬁhf"ﬁ) gw per ﬂ{“‘-"’J ﬂ ?F) SLm PTF(’K)
We shall use tke following notation: NJ*G-_* )u{ (P"')é’fl
&n
= ¢ éﬂ) From Eq.{1.1) we find . _
g@emoj )que;m . ;-DMJP; 2l ; NP= (0L L (PP - R P), -
A e gk +¢ - iy i)
% : 4 1 (K Wg ﬂ{‘é)(@fé") Bly)- R (;D{?)):D TF@
Hence, : « (A1.T)
i) {Ir*} . —{( ~ 3 it
9;: (P %)SDMJH(CP@;) pT BP0 reitendin, te B0 A0 Scfg A Pty Prts) - Py Ply)
Prom Eq.(A1.2) we have In particular,

P s i) th’}
q’fm}) Afret) £C%) CPMH o) — ' A ${: :/\J:A) P ] (c*¥n)  (n.e)

.-'1‘,} (41.3) .=
o ﬂ-i{g)g A{'{)((Pﬂ f?) P [3) P{g) C;JF();{ /;D i ttan) Fan e 3
Aj AR éi— e % aiF (::,4-‘,?2) {41.9)
33 @mﬂ :i) =) ﬂ(+gq) AN (;) Cptm’} c:-ﬂ) e There is mo difficulty in ﬂeeing that for the operator
- d{
A (P P) = il A P()
“i d{g) g'dﬁ ,ﬂ[g)( (Pffﬂi)) P (;{) P['af) CPF {:ﬁ)ﬂ){ 1.4) L A ﬁ}( [ ] Pt

—L[P (%), gﬂ%’ fPF(s) JEJ

the following relation holds ( é;ﬂ: = U'_ )h‘f (F*)gn)

where (%)= eXP{ fd#( A1)~ P},
Pollowing from the annptotic ssopsrtias of - el . E. .

4 + *ﬂ'ﬂm tn) & Ai.11
L B AL, B

(41.5) Hemee, _+pn)

($MJ )Wi =( )“ = duk S‘k:n, L _g’::i”)‘ A j [P (), Snﬁ] (41.12)
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Znn ¥=Sa,~ Yo g vou-D D's
where ( g ke = 5;_;3 : Let us introduce the "covariant® derivatives ./ V)

Hultiplying the equality (A1.12) by % and sunming over e s # (a2.5)
7, we ebtain '@izua_ '6[QFQTJ ‘]F > LJ:Q QTJ ]TF

N - o |
[+
L HE'\KH ?TF >\£A E Y S’ ] [P (’) \r] (A1.13) Then Eq.(42.4) is of the fomm
= n -
i C JDL f-ﬁ-}- =\ [A; LH&-J . g
TR . Applying the operation R te Bq.(A2.3), acting on the resuliing
| : tiom ;Dn ‘and taking inte accomnt (A2. GJ, we find -
Let wa commider Eq,(A1.6) at P-— P and 'r (G"G*r) { equa m
| @ W _ \2 o (42.7)
We use the follewinmg netation: ‘P;?_(F J;; (F)e,q and : L Y,ﬂ - [A (H!. J QLQDM[QP, ]
q} @F @F T? _} ﬁ « It's eagy to prove that o=

7 _E:PJ:@ }@T ¢ - c[6-Gr, d4[Q-0r 4],]= [ y= DY~ Do +2106)5 Vylo-a, q’”)]@]} o

A[AY]2[0-Gr, 8], =V Slgrssmelic o |
""’%‘E’ *‘[‘Q'@q ﬂr—* 4 }»M} HV], (42.2) me_ IIV i >\ lTUm, G"*n)' (A2.9)

Let us apply the eperatien ﬂ.,. to Bgs.(A2.1) and (A2.2). We Equations for W.ﬁ... and }ﬂ+ are the following:

kave the fellewing result: ¢ Da, +m} +1L[Q(FJ Sﬂt‘j[ﬁfﬁj -OrlY), %J‘J)] ] it
g’y"*ﬁ‘* Q-G Yl *m -Or, Yaulrra, ﬁ %[A :fi‘n)] =918, ﬁm:( e

-2[Q, 5"‘#[@*@; WA+]@]=)‘[AJ}4+] ~2 [Gr?]; s 7 F —*tm} ALA, L!WJ . pgbes

P
Lﬁ% +£Q#GT1 }‘ﬂ'*:(Fd: [Q-QT* §ﬂ+:(TFﬂT}\[AJ%+ 4 : With the use of Eqe.(42.10) and o ““:i:)
) )3
In expressioms ef the type ZT.’:31+--- the operationa are performed "':Bd $ﬂ+£f -Z[Q{*j g"[f![a T, “hy R ] (A2.12)
frem left to right. Fete also seme obvious but useful properties 3 Lh
in ealeulatioms: operatiems ‘J"- . commute with each other; = 1[)‘4; ﬁ&{_ HQA [GJ’ St ]

Tﬂ+= ﬂ_T E[Pﬂth‘ZQt]d_:O ; for the symmetric matrix ﬁD
e have CPz (P:L e %J’ » for the amtisymwetric one f "
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