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I. INTRODUCTICHN

The inverse spectral transform (IST) method allows a com-
prehengive study of a great number of various partial diffe-
rential equations (see, €.g. 3:]} The general scheme of
this method was discussed in Refs. [4:[ and ]:5]

211 the differential equations to which the IST method is
applicable are united in the classes of equations integrable
by the same linear spectral problem. A simple and convenient
description of the class of equations which are integrable
with the help of the linear (in spectral parémeter} spectral
problem of the second order was presented in Ref. [ﬁ]- This
class of equations is characterized by the (n-1)th arbitrary
functions ( n is the number of independent variables) and by
certain integro-differential operator [é{ﬂ « . The analogous re-
sults was obtained for the class of equations which are asso-
ciated with matrix stationary Schrodinger eqﬁatian_[é] , the
general linear spectral problem of arbitrary order EE}-'I'I] and
also with the second-order linear problem quadratic in spect-
ral parasmeter DQ]. Within the framework of this approach the
wide clasges of Backlund-transformations (BT) which are play-
ing a significant role in the study of nonlinear differential
equations are also found Ef,ﬁ,ﬂ] .

In the present paper we construct Backlund-transformations
and describe the general form of differential equations integ-
rable by ihe general polynomial spectral problem of the order
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where ,x is the spectral narameter aq 19 the congtant dia-
gonal matrix N x N ( A.Ht-— ¥ frx,, { k 1’.,, N ) s

the "potentiala" P(; )are the matrices N x N with zero diago-
nal elements (' f’ =0, 4<1.., Ne=L, /), N and m. are any num-
bers and o = 1,... .’?E . We w:Lll clarifz,r some functional rela-
tions between "hO‘tEIltlal“" P"L arid consider the group prover-—




ties of BT as well.

II. A general form of the integrable equations and Back-
lund-trensformations.

The system of the linear differential equations (1.1)
gives a mapning ;i-"~—"!- 5; . Let us congider arbitrary trans-
formations P—? i : .= 'E;/*"r congerving this man:ing
(i.es )\-a), =) ). There is no difficulty to be convinced
that (at AN = 2, see Ref. 3-])

?/ WK"‘LVS(K%((]V (P P)SV, (2.1)

where the constant matrix K ig determined by the as :,rm:uta—
tic pronerties of the matrix-solutions (ilj .

o
We shall suppose that all P=>0 at [¥/> o0 . Then

%Fﬁ ‘E.KF f,:imA}i# E . Let us introduce, following to ﬁﬂ

fundamental matrices-solutions F' and F~ with ‘if‘v{'ﬂ‘)t'ﬁtl{‘q

i+ T ! tr tion matrix
— E_: v 7, “'and the transition 5
A~ o4 y 1
Ft= s :
Putting = F T and proceeding to the limit X—=>—o40
we get :

e - o e !
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The formula (2.2) conmnecting the variation of the "po-
tentialsg" Pd' with variation of the transition matriz S is
5 basis for what a further discussion.

Let us suppoge that the trensition matrix is transformed
- e f 2 .
under p"--? Pl y! as follows

(55" )in ===(5'B35Y Y=gy M (2.3)

r=n
where B is some diagonal matrix independent of the variable

Kolin

From comparison (2.2) and (2.3) we have

T { F(PPIF = £ (S8 D )

Taklng into account the relation

{5 55 f,,= de-lfﬂgpjﬂ QX{F*’[PB EP)F']”,,

we find that

__idl{Ff (P - p+.(PB-BP )) F+'F‘h_o[g,§5}

Rewriting formula (2.5) in the components and designa-

ting {Prmj (F‘\");L@:*)gnwe obtain ( Bie (V)= Bi (») J_L)

L M-L/" o )
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“%a ke o=t fﬂ)
Formula (2.6) contain the product ‘f[}\‘)@ﬂ g }.) wha.c,h
given locally in each point }\ of the bundle (1.1). The
apectral problem (1.1) give the pogeibility to transform thisg

local (in )\ ) product into the global which is determined on
the whole bundle.

Let us pointed out, that the sum over ﬁ’t £ in the for-
mula (2.6) does not contain the contribution from the diago-
nal quantities {Lﬂg [}J .1' J. The equatione for quan-
tltles ?ﬂ’; are eagily nhtalned frcm (1.1) and have the form
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It fnllnwa from tormula (2.7) that —E;—*;-' is proportional

only to nondla)gcnal quantities q}fg{: » Integrating the equa-

tione fl::-I‘ @gg and teking into account the asymptotic proper-
“ties -:::f " we obtain

| CP( (%)=6.y 22 ﬁ[a{Z‘)\m F{Z AON !) Z?; ;;jzz;ai

Substitution of the expression (2.8) into the formula
‘:2-7) gi'\rE
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Let us emphasize that the equations (2,9) coniain only .
nondiagonal quantities ;’é" [ LEn, k¥ 3} foitida conve-
el

; ., ()
nient to renumate PR'.F and ? -Pg;: e, P,I} e =7 ? ?

,ﬁ*—i H'z N & Then the equation {2.9} can be rmitten in the
- ucrmpa-:t form )

RPN R o

! @#n)
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where @ar are the matrices with operator elame;ELE ‘1:(-: ;ﬁp
cit form of the quantities Q{ in the terms an
be easily obtained from the equations (2.9) and (2.10).

In virtue of the generalyzed Bezout theorem (gee e«ge
ﬁ5]} the equation {2 10) can be reprezented as follow

R H[,X Am) A | (2011)

where nperatnr.j ﬂ.( are the “rmtﬂ“ of the operator polynomial

;{,\J o A(gj) O y #=4., M . In the case m =1
we have (A ) P= 0 ['_;,1{[

The equivalency of the right and left division E5J leads
tu the commutativity of the factors )\ Am in the product

()\ A@;) . In virtue of this property the golutions of the
euj!uution (2.11) can be represented in the form (appuming the

non&egeneracg of operator Q rg}u) ¥s
{t’.rr) )
P = iy

where ﬂ}t )

(nr.)
-® gof gel quf "5“ i Af)ﬁi‘ﬂp { +

As a result the equality (2.6) can be rewritten in the

fgmwing wm { & +;Z [ Pge [ Be( A@)Jz&?ﬁ

+
(2.12)

[&c (A@;)]zg%g]} A@J?Psg (mj =0 : (r:,':#ﬂ)_

The expressgion in the round bracket in the {E.1E) does not de-,
pend on )\ i.e. it is given globally on the whole bundle (1.1)

-m 3 rJ—“i' .'Pg

At last,integration by parte and changing of the order of
integration in (2.12), :L.e. the tranuition from operators Aﬁ.)

to adgnt oparators Afﬂ give,

Ta’ X

(2.13)

+¢ Z[fﬁe{ A(y} :(?Px{’ ch [8 (A{f))_]qPEE’ ng j} 0 (‘#z}

Thus, ‘the transformations P P congerving (1.1) have

S Bt 5y - P+ 2L 0 g P

= .r q,p (2.14)
- | Be [A@Jﬂ?pxe Pre ]} (S+4).

Let us pointed out that in the general cage operators AG’! are
functions of all P and P [t = .2" m) « The arbitrary

functions Eg caen also depend on an:,r m.unber of additional
parameters ( {' p j )

The differential equations integrable by the linear pro-
blem (1.1) are obtained from (2.14) if one considers the
transformations of P"‘ , which are generated by the infinitesi-
mal displacemmts alone 1,‘{ and ? 3

AP '_"'_"f'H(’\xg)




where ;rk}

The general form of the :Lntegrahle equations is the fnl—

) are arbitrary functions.

1Uﬁ%ng
Poxdd) <
Z’% )s P{—-j:;_{:l'i “i"?{m{)-@; JJH?PEE r);{f
(2.15)

¢ [Y [L(SJ %rgj \r“(L{fJ g)]qpﬁié’ PKE' }_ZH
where L@j flfs’) (‘PM_"P)’ "' Jm}

k‘t’?f,?,qﬁ.- 458 N, S=# and gf,\{;)md ﬂ‘[}lfg)are -
arbitrary' func.tmns. : - \

e !

Thus, the polynomial bundle (1 1) pe:-mita the integration
of the M c¢lasses of differential er;ua*b:.cns . Each class of
the equai:icns are characterized by the 1n’cegro--:31fferentla1
operator and by N*f-ﬂ 3 arbitrary functions

Y, 047)-Ye (34F) (161, V) Hi z‘,g)
For the explicit dsacript:.on of the integrable Bquatinns
it is neceassary to know the explicit form of the oparatora
L(ﬂ . The explicit form of the c:perators EE{‘) was found
in the following cages: 1) M = 1, 2 [6], ¥ is arbitrary
Ei,‘!:[ 2}m=2,ﬂ=2 Eﬂ-:.n'bhﬂ.seaue Lﬁ:,:j-iﬁ}and
operator Lfij plays a role of operator L. :

Tt is possible to show, enalogously %o Ref. [9] » tnat
the equations (2. 15) are thé Hamiltonian equations, and &s. £
the case N = 2 [i6,17] the infinite number of s:.rmplectic '
stmctures are connected with these equations.

III. Transformations prﬂpertles of the transition matrix
and functlonal rela'bz.ona. iy _ _
ot 1ol Cos e ox g .
Transfumatinns P = P of the form (E.'M} induce: . - x
in virtue to (2.2) the tranafumations S—‘:: S' « Rewriting =

+ f
# If some of operators 1ﬂm.ncide each with other, then the j
number of classes, of course, decreases. y

(2.2) in the components and teking into account (2.3) we ob-
tain fehiy
o @ T it ek s at o ) .
S J—r.a 5 Z O ¢k (S 'BS")MI (3.11)

il

5:}3"'5:.',?,"”:
where j

M=ol ]@[ n

fo&ﬁ’ /\ [P P)m* ‘PQ”

It isn't difficult to verify (using (E.B}Jthat

F0) e =4 S AP (Pl b - P s}

Ag a result we have

(Lo fip- g P g P

Thug, the changing of the transition matrix S under
the transformations (2.14):is determined by the relation '

S S+ Sl At (1-1;1)53”:3 3i

where I is glven by the famula {3.2)

Let us poin‘bed out tha-h the transfnrmatlon properties
(3.3) of the elements of the tranaiticm matrix are the same-
for all equations of different clasaes (with anﬂ Jl&ﬂ}'

The fairly complicated tranﬂfﬂrmatinn_lﬂw_(j 3) can ﬁé“
rewritten in a compact fnm--if-one introduce a diagonal mat-
rix QJ s for which el

r@nn = (S B’S)mz “ﬁ—f-n

S‘-? CZ-.c 3) S’ﬂ .«:..Z?) (3.4}2

If the cnn&ition

5 55’)19;: T.'_FI 5 EM + (3-53*




ig fulfilled, then 4
Sl BIS (Aot B)

The evolution of the transition matrix S' ig the fransforma-
. tion of the type (3.5) and in the infinitesimal form is de-
termined by the equation

A 5'._._;;_[%\{]’ (3.6)

For finite transformations (in the case of two indepen-

dent variables )(F{ )} we have

S‘(Aj')-:exp(r gkyY();s))s’(@, é)é’)p{—f';JsY{A;s)) BT

In particular, the diagonal elements of matrix S’ are
independent of time: Su'()\f '3')= 5’1}'(}} o) (:i = Jf,J ;'-f) H
Tharefore, quantities S‘“{}) are the integrals of motion.
Using the standart procedure of the expanding of En Sln'{}\)
in the series on }."'1 one can obtain the infinite set of the
explicit (in the term of P"L('}c;f) ) integrals of motion.

The trensformations of the type (3.5) does not change
the diagonal elements of the transgition matrix (end, therefore,
the Hamiltonian) too. So, they are the aymmetry transforma-
tions for the equations (2.15). It is obvious from formula
(3,5) that these transformations form the infinite group. It
is possible to show that the existence of the infinite sets
of the integral of motions for the equations (2.15) is connec-
ted with the invariance of these equations under the infinite |
group of transformations of the type (3.5)

: ol I +
Pransformations P > P . which doeg not satisfy the

condition (3.5) change, in general case, the diagonal element
of S . One can divide these transformations following to
Ref. ET_] into two types. The first type of trensformations 18
the transformations (2.14) with matrix 5 independent on £
and 3 . It ien't difficult to show using (3.3) that these
transformations does not change the form of the dependence of
S'{ ‘}fr {)cm time. Therefore, they transform the solutions of so-

10

ne equations of the type (2.15) into the solutions of the se-
me equations; i.e. they are usual (auto) BT. If B depends on

¢ &nd {orjg , then the transformations (2.14) are genera-
lized BT: they transform one to another the solutions of dif-
ferent equations of the type (2.15) (with different functions

YE and H ).

BT (2,14) which change the number of zeros of the diago-
nal elements 57“ of the transition matrix are solitons BT.
They add one or several solitons %o the initial solution.
Tranaformations (2.14) which does not change the number of
zeros of Sf.e';'{}) are continuel (nonsoliton) BT.

In the case of two independent variables ( X , £ ) one
can transform any solution of the equation (2.15) into any
other solution by the transformation of the type (2.14). In
particular, the transformation for which

! \
W ' '
B=L(1-exps- ljds\f(x, s})
displace in time (as it follows from ‘(3{!’}) the transition
matrix: SI(AI{T)_} \Sr(};‘ff) « The inverse%apping PF"'{"; > Sf[/}}f')
jnduce corresponding transformation P‘[J’-’f F)*a P'.'E(}fj 1‘)= Pi{.‘; £).
Thia transformation have the form (in case N = 2 see Ref.[‘?]}

f i -/Y@ir:?p {[é?‘P & 54’3\{3 (/e) S)quﬁ i (%4)

=1 9pKe

. -[exp(-¢ _fds‘li (*A;”fs)ﬂ??f-f P (,5%,)}: 0

where in the operator Aﬁ} one muat put PM{/H f) o p-L(J‘, f’).
Tf one congider displacement F”‘{h:_#)—v P"J'{:j t+€) where £=20,
then it is easy to show that the transformation (3.8) reduce
to the equation (2.15). ;

(3.8)

Thus, the differential equations of the type (2.15) are
non other than the infinitesimal form of the transformations
(3#8}1: ; i

1




IV.. Conclusion

In the eeneluelen aome Temarks.

e 1B {2 ‘14} are determined by the matrix B(}‘;{r;{)
Diagonal matrices B form the infinite abelian group. Therefo-
re, BT for the equations (£.15) form abelian infinite group
too., This group (enalogously to the;eeee N =2 ﬁﬁ]} is the
tensor preduct of Be ® B4  of the infinitedimensional
continuous group ,Bh " of continual BT and infinite discrete
group B‘f of solitons BT. Follows to fi8] one can consider
the trenefermetlen properties of spectral parameter )h , quan-
tities Qf{%’ffh and BT under the symmetry group of the in-
tegrable equations. .

5. The results obtained in the present paper can be
tranefered to the case of nondiagonal matrix A. In this case
transformations (2.14) and equations (2.15) are determined by
the group of matrices B, commuaiting with matrix A.

- In enx cases transformations (2.14) is group of trans-
formations conperving the mapping Fi'?*+9{1 .1) and asympto-
tic E of spectral problem (1.1) ( B EB=E).

3 Heny.eepeete of the theeiy of the integrable equa-
tions of the type (2.15) have manifestly group character. In-
deed, BT (2. 14} and, in particular, the evolution of the "po-
tentiala" }3 {K {) in time (3.8) is the transformations un-
der which the eneetral problem {1.1} ig invarisnt. Transfor-
mations  W(X tf}k)—‘} (% ¢) ()V{ ) are the gsuge
transformations eenneeted the different equations integrable
by the problems of the type (1.1) [%,19 2@]. Local in ‘A
transformations ¥ (X ?, M= @l -{,l)" g(}lfrl) *Pf _)
congerving the form ef the dependence of P om.\ underlie
the methed of congtruction of the explicit (soliton) soluti-

B3 -
Thus it seems that the theory of nonlinear partial diffe-
rential equations of the type (2.15) is a constituent of the
general theory of the group of the nonlinear transformations
connected with the spectral problem of the type {12719
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