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Abstract

A simple microssopic model of nuclear rotation is
 considered. The particle~plus-rotor model is shown
to give the axanf solution of the problem, while the
cranking model disagrees with it. The comparison with
the approximate projection method is mades .
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Presently there exiet various approach to the problem of
micriscopic description of nuclear rotation. Some of them have
been developed in order to improve tke cranking model (CM), or
to find a rogirous base for it /1,2/, whereas the others are
based on an approximate solution of the exact operator equa-
tions of motion /3/ and their results are close to
those of the corresponding versione of the Bohr-Mottelson uni-
£ied model (the particle-plus-rotor model, the phonons-rotation
coupling model etc.).

For even nuclei with small angular momenta the consequen-
cies of these medels are in fairly good agreement but for odd
nuclel the results obtained differ sharply even for low-lying
gtates, This discrepancy is mest obvious in the case of strong
Coriolis mixing of rotational bands. For example, in 15951 the
GH agrees much better with experimental data compared te the
particle-plus-rotor model (PRM) /4/.

So far neither model has mo rigorous base. The PRM seems
to be more prufErnhia due to its clearness. It 1u'enuilr-dnriv—_
ed from the operater equations of motion if the odd particle is
considered to be only commected with the rotatienal degree of
frosdom of the even sore. The CM takes into account exacily the
Pauli principle but because of the gsemi-classical character its




applicability within small angular momenta is still open to
discussion. Several years ago an attempt of its substantiation
has been made in the framework of the approximate projection
method (APM)/2/s This attempt has proved to be insufficient

as, first of all, the APM itself must be substantiated. For

these reasons, it seems to be useful to study the applicability
of the above methods in simple models of nuclear rotation which
admit an exact or regular approximate solution and are comparable
with realistic Hamiltonians, at least to some extent.

In the present paper we shall consider a simple model where-
in splitting of one degenerated "spheiical“ level produces a large
number of levels due to deformation and amn one-particle operator
mﬁdelling the angular momentum (plane rotation) is conserved.

We shall show that in more importeant, from the physical point

of view, variant of the odd system the PRM gives the exact solu-
tion of our problem, while the CM disagrees with it (except some
trivial cases). Hmrﬁcver, we shall see that the APM leads to the
FRM equations in contradiction to the general results of Ref«/2/.

The inaccuracy made in the above paper is. also analysed. |

DESCRIPTION OF THE MODEL

The space of single-particle states in our model is deter-
mined by the basis [laSzV> , fz=-€,s*l 3 Sp=3F 5 v=tu 22, ‘
We shall consider {; and S, as the z-components of the form-
al angular momentum operators in the representation 2= b(t+1)
§I=% 3 Y is an additional quantum number over which all :
the nﬁer&tara in the problem are degenerateds The Hamiltonian |
in the model is expressed through additive operators Z=§Efllaiqg |
and g'—'- 2;‘.@}41&1‘1‘1 ¢ O.: is the fermion-creation operator in

il

the single-particle atate [41) ):
H = =300 S ettt L8 =
= -1 §‘+m5§-r(i+$_+f--8+), | (1)

where L-l:.ixiif_g . S__;_.sti?ggq {AE}: AB+BA .,

In what follows 2 is assumed to be integer. Hence, our
model can be interpreted as a version of the spin-orbital coupl-
ing on the only shell.

Hamiltonian (1) conserves the operator SE'*'L;E-/“ s which
plays a role of the angular momentum in this model. A takes on
integer values in the even-particle-numbér system and semi-integer
ones in the odd system. The maximum possible particle number in
the configuration space of the model is o2 (264)e 25l ; we shall
consider the case when a half of the states is only occupied in
the even system and a half plus one state in the odd one.

The conditions

BHO 4 J %05 SLmdu 2~ylQ , (2)
are considered to be fulfilled, In addition, we shall be interest-

ed in not too large values of the momentum:

| M| « (22 (3)
EXACT SOLUTION
fteanai S
Since the additive operators L and gatisfy just the same

— -
commutation rules as the single-particle matrices L:liaid TSR

the internal states of Hamiltonian (1) form the series, or bands,
corresponding to the representations of SHE x SUE algebra with
certain "total angular momenta" L and S . The problem on ad-
missible values for L and S is analogous to that on electron

terms in an atom., If we are only interested in the yrast-states,




we should consider the representations with as large S as pos-
sible since the Hamiltonian includes §Z._. S(S+i) with the large
negative coefficient. For the even system, as mentioned above,
we suppose that a half of all possible states is occupied, i.e.
the particle mmber is S/ = 20 (2¢+1); the representation with
a maximum ,S‘f is then given by quantum numbers L‘-—"O, S= S2(2l+4).
For the odd system N-'-‘.-‘I-Qf.ﬁﬁ'*-i)i { and the corresponding repre-
sentation is characterized by the values £-=£, S:.Qf-ff-f-i)-;i o
To prove rigorously that just these representations correspond
to the yrast-band is a complicated problem. However, the numerical
experiment has shown that when S& & 10 and f =1, the inter-
gection of the bands corresponding to the close representations
is posaiﬁle only at the momenta comparable with the extreme one,
l,e. at Jlﬂ.ﬁ.(ﬂ&). As we are most interested in the case of
the small momenta, our further considerations will be concerned
with the representations with a maximum S .

For the even system the solution is trivial since in this

case [ =0 , \ﬂ’:.’i‘-g and consequently,
H= 2 M +tonst, i3

that correspends to a plane rotator with the inertial parameter

e (5)
2t

We shall find below that the Inglis inertial parameter cal-
culated in this model yields the same value.
In the case of the odd system, [, is restricted (in the
representation where Z.E is diagonal) by the inequalities
~pbiyg L and =S < M-L<5 |
because SE+ ['E: s ek I»Mlé@ﬂ-i){&i—) the second inequali-
ty being resulted from the first. Let the quantity o be fixed.

Then the basis states are only characteriz'ad by the quantum num-

ber Lgyand  <LplLySi|L5>=8, | ol Xt LSl XStlrl-Lg) =
&9/ G M <Ly L4l L3>

since S ., In the region of interest &K S Q(20+4) ana
<LallyS_|£5> = S<Lp|Ly|L3> .

Thus, the ground band i;x the odd system 1s descrlbed by a Hamil-

tonian

H=%(l-6Y-258 ¢ ”

where, since L’-f« , we substitute the operators Z. by the single-
particle matrices z and also ﬁmit the additive constant. Hote
that the sign of the second term in the right-hand part of eq.(6)
is not of importance as it can be changed by the unitary trans-
formation EKP{I"?T&E). Hamiltonian (6) ie a matrix of the order of
D€+ 4 4 the eigenvalues of this matrix, which are minimum at

a given vu , determine the energies of yrast-states.

SELF-CORSISTENT FIELD

We ’neging'a study of various approximate methods for analys-
i..ngour'mndel with calculations of a self-comsistent field and
a single-particle density matrix in the frame of the Hartree-
Fock method. The initial Hamiltonian (1) may be written down in

the standard fomm

H=3 e,0ta, + f‘,_- > <tzjrit> atalaya, ; | (1)
12 122y’

where £ ,=-Y ({,3- +{_ S.gﬂ_ : <42) 2> = —» [{5+)H, (B, (), fS.,,)m,]_
=¥ [_f Eq—)ﬁr(&:}hﬁ (E-})u_r (S-).Hﬂ' le-)Hrf:S-r%} F(0 Yoo (R )i ] 5 |

and the matrix elements are taken over any gsingle-particle basis.




The self-consistent field w is determined by a single-particle

density matrix as
Il —
W.w = &yt + 2T |2H> Q= <RIVE2 €y, =

= =[RSy +Y<Le>] (S ALK EDC gy —
Y (S S + R(EGS+ 298, + (G888 Fem))

(8)

where we use the notations &Si>=TrS:f and (,ﬂt}-:"rrf:hg’ .
The condition 23 4 enables one to neglect the single-par-

ticle and exchange terms in eq.(8); then
W: -3 [xﬁgf}+‘{<-‘i—i>:{g;“"r23‘{'gi‘> g}( . (9)

Hence, W is diagonsl in the representation with definite fx

and $x . Conditions (2) which are assumed to be patisfied lead
to that the single-particle energies are decomposed into two se-
ries, each of them is characterized by the quantum number S.=t1
The gap between these series is much wider than that between the
levels inside both series. A state with definite fx and Sx 1is
degenerated over N=1, .4l In the even system the states of

geries Sx= -% are occupied; thus,

(10)

Whence,

CLli>=0, <&y=-0@ED=-S. an

Finally,

W= 22 S 8y +2§S f';( . | (12)

Let us also find the Inglis moment of inertla. It may be written

3,=Trm®

where = '€£+S’E' and CP satisfies the equation

CWCPI:T_M?] - (13)

as follows

Then
q)=£‘g,.§£ and }§0=,2j5:1

that coincides with eq.(5).

PARTICLE-FLUS=-ROTOR MODEL

Consider now the odd system with the particle number
N=20@206D+1
The PREM Hamiltonian has the form

"o = .ié;rﬁz_l_w.. (M- 9!;68?)+,2m38 4288k s (14)

where vu is the total angular momentum., Only those intermal

states in eq.(14) corresponding to a finding of an odd particle
at the unoccupied level have a physical sense, Due to conditions
(2) and (3) this is equivalent to averaging of eq.{(14) over a
state with Sy= i— . Hence,

2
g{'PM= C#ET;‘:‘)' 'i"aZh’S ’ﬂx =~ E(‘u_aajz"]‘&h's '815(15:,

that, up to the trivial rotation, coincides with eq.(6). Thus,
we have found that the PEM reproduces the exact solution of our

model problem if the conditions (2) and (3) are fulfilled.

CRANKING MODEL

The alternative approach to the problem of finding the ener-
gies of yarst-states in the odd system arises from the CM., If
one introduces a density matrix 'ﬁ and a self-consistent field

W , both are dependent on rotation frequency GJ) , and elso

an energy-g of the system, one can write the equatiomns of this




model as follows:

[Wpl=0, P'=T, Tmp=Tealap=udl,
e e e

(16)

where

T SN e D ——

W=-2 [%-t:. Se» ﬂ’{it‘)] S~ 2y<81> fl (8PS t8 S~
< Sx>=TTrs:f <f-£}=75“5-;? :

N,

- @l-98; , (17)

w includes only those of exchange terms which &re of the order
~® , i,e, the terms of rotational energy. Generally, the terms

of such s sort should be taken into an average value of the Hamil-

tonian:

g =CH>=-%< Sx\i —iﬁ'clgt‘?(ét) re F45SF (18)

An exact solution of the system (16) which corresponds to
the occupation of <2 (20+4)+41

found by rotation around the y-axis in the -E - and.” & —-gpaces:
?':-:%(H %;g)— fgn CH‘X\ 'Sggin%)(_{- 5}.-‘:?) ;
G e"'fg’{? §(4,—A)e 'P{'f ;

lower-energy states is readilly

(19)

where gfi is the matrix defined by

4?."%«[‘:’5 = Oy Oy (V- 9p2C),
the quantum numbers /‘-r and /| fix the even-particle state and '-
the angles f@ and X are defined by

L1

A ; n?[;fll{g:i:‘?'l-w_ijglh{“ &J@Al =% 'g,-'..f“.? ?( 2 (26) m

Sin P = T/‘;,?zﬂ ng
+
At small Jl a rotationel frequency &) is of the order ®.4/. 1
while {:Si-} ~Sw f.Q_ e It follows that C;,]'{qa?q:gr} ~ 2 S % 1
Taking into account this condition, we find

' {S-_q—_) =T|"$_-|':_?. ﬁ_Sﬁhﬁ;S s (i;t>'—:T?€1? F':AG:')F . (21)

10

Then eq.(18) gives the energy as a function of GJ :
i 1284 2
L oanh R o2 )

Finally, from the momentum consistency condition we find a con-

nection hetween UU and &J @

2
M= Tomp= S Siny=A Sinp = L - Z—=+0 @) (23)

Tn the frame of the CM equations (22) and (23) determine

the energies of the odd system at a given momentum A . It is

L

eagy to see that the yrast-line corresponds to a cholce J’l=+£
that corresponds to a rotational band constructed on the lower-
energy state of the odd particle. Hence,

ok . AESC

92 1/,;,5231_‘_ ot

(24)
4 S =0 (@) ,

@Yoy ==
¥4 R P‘?{’Sﬂ- m“ ¢

Note that the bands constructed on the states /L > QO behave in

an "anomalous" way at small <& 1f

ws Ehe
In this case, ?g
M <o , 52 <9,

when @) is less than some crificsl value,

How is the GM solution (24) related {:o the "exact™ Hamil-
tonian (6),or (15)? To answer this question, it is necessary to
note that eqs.(24) may be derived if one makee the substitution
in (6) ;

é— Sl <b>l - ‘552521 (25)

where the average is taken over the intermal state of the Hamilto-

nian which is a result of this 3

Y = % [ 2(M-<60)E; —<f> ] + 2y S Uy (26)

1




Indeed, if one denctes
L) = 2%(&““{65)) 5
one obtains from eq.(26)
i iz el "“F'{T F;’.Lfg :
W= M 1"’],!‘?523 F e (e 6 (57)
where the quantity @2 is determined by eq.(20). After rotation

by the angle one finds immediately:
¥

& % i o2 *_@} sz.fzf
-g-‘::?f}_w;u g-z-,"*g $rS%w® =da m?

B
425 w0

vu=£ +<&> =.‘%"'€£}’/‘3=4m*

L]

This coincides with eq.(24). This result is not unlooked-for if
one takes into account that, in a matier of fact, the replacement
of (25) means a neglect of the quantum-mechanical interference
and, therefore, is a variant of the quasi-classical approxima-
tion, There is no difficulty to determine the availability of
thls approximation. Hamiltonian (6) may be written as follows:

=& i +9€f{a-<fz'>)£. (28)

If the second term in the right-~hand part of eq.(28) is considered
as a perturbation and the trivial case 7Y = 0 is excepted, it is
easy to find the conditions under which the eq.(24) holds. First,
the contribution of this perturbation is small if () is large

gunongh: _ g
0% > e min (=, YSVL ),

or if aﬁ-_/[.} ‘-EN}’S.,
| [ S>% » 1eee  JM[>4 . (29)

Second, approximation (25) is valid for all AL if

14 <4 e e ys, (30)
b e

In the last case, the guantity % Berves as a parameter of per-

gL

-

turbation theory., It is clear that conditions (30) mesn (at £~ )
a smallness of the Coriolis term in (6), or (15). Frem (24) it
follows that

gﬁ?EvH2+Cpquf. (31)

Thus, at f ~4 the cu yields a true result only in that case when

the Coriolis term in the Hamiltonian of the PRM is small compared

to “the one-particle energy (conditions (30)), or compared to the

rotation energy of the even core (conditioms (29)). At b4

the applicebility of the CM is extended but, as before, the energy

is square-law with respect to the momentum (at not too large il ):

g =~ ? ,2:; iﬁ’ﬂ ¥

(32)
if 1«f«£ ’"*9 il wclpd ol isse

PROJECTICON METEOD

In the projection method /1/ a class of variational functions
congists of the states
Bk (33)
where Fhi is the projection operator of the state with momentum
‘li and I(P;>is restricted to wavefunctions of the Hartree-Fock
type (in the absence of pair forces). In our model the projection
method leads to a correct result both for the even anﬂ_add systems.
This is clear from the fact that the Hartree-Fock states in elther

cases belong to the spaces of representations of SUE x SUE algebra,

which correspond to a ground state of the Hamiltonian (1). Actual- -

ly, in the case of the even system, as seen from (10), all the

states with éxz—;%- are occupied and those with Sf % are free.,

13




Hence, the ground {Hartree-Fock) state [o> satisfies the equa-

tions

Lle>=o0, 8 lo>=~@tlo> ,
(Sg'flgf)!o> = G" {34}

Whence, =
ZJ{G‘}:O ; Sz[ﬂ>= S(S+_fz_‘};g>j

8= O (2+1) . (35

Let ue now consider a state
Rulo>. (36)
1% is obvious that this state belongs to the same representation
and ie an internal state of the momentum operator, and, thus,
of the Hamiltonlan here depending enly on the momentum.
In the case of the udd system, let us consider a state
1A> =aj, 310>,

where a‘#mtf’ is the fermion-creation operator in the state with

t’x—m SH...U" (of course, the chuice V=4 is ingignificant). Using

e R T S. , it is not difficult to
obtain

SIN> = [t )= £ ]I § (8- 18N> =0,

and also

LyId>= MX>, Uymid)I>~10-2D  Lyidg)>= 0.
Tt follows that |A\> is the basis vector of the representation
with [=f and S=.Q0i)-1
f;l?=f[x=;\}£=f;SA-"‘S,S‘-'RMHJ"%). (37)
Let us show that the basis of this repressntation can be given

as a linear mparpnsit:lun of veetors

[La=m> = %Q}LC‘”}{/—Kﬁ:\>

then, e
[£a8e> ~ B 143,57 S>3 Bl AN R Vi ,s,- -S> =
La%

=S 0, U8 s )PP B Db 1> =50, U sl Ui B, B 2
Mg e

= 3 Oy ULa) 8L+ G- M) [ N>
A

Therefore, the eigenvector of the Hamiltoniap (1) when it corr-eés-
ponds both to the representation I:E j,S'= .Q(’:g&ﬂ- .,% and moment:um
V‘H , can be taken in the form

(W= T N> =R, SO0>=R, 3005, 10> P, (P>, (38)
A

Thus, the mean energy variated over the (33)-type states has

a minimum coinciding with the eigenvalue of Hamiltonian (1). BlowW-
ever, approximate formulae for projected energy ars wusually empPloy~
ed in real calculations. These formulae are vglid if the momemtum
dispersion in the ground Hartree-Fock state jg large enough.
Proceed now to an analysis of ihe availability of this approxiima-

tion in our model.
APPROXIMATE PROJECTION

Tn Ref./2/ the approximate expression fyr projected energy
has been derived. In our case of a plane rotgtion this expres-—

gion may be written as follows:

ksl APy 19> < (AP (- <uipf?
€,= = <Hy-Z ==

PR D> < (ul _»:);}M‘} !
A ) <{H{H}){~u -G, A
¢ Al(di=<di)> (M- <uu>)+_2 wEE (,{,{-@ﬁ}) S

(M-S

15




where all the averages are taken over the state fdﬁ} .

Let us choose Py |P> for the odd system in the form of
(38) and will variate eq.(39) over parameters Cﬁ . Since
the normalization [P > in (39) is arbitrary, we should require
that

<> = %c;“c} =4 . (40)

Calculation of the averages entering eq.(39) is trivial and

vields: .
Cli> = Ul O J2lit>= Ad e %) o
. >"C1 Faat Y S MY T Cx (b Gy

& = %":ES Jr.f_hé; fi[fﬂ;:»fc}( 5 (ﬁ-&)‘#iiws Cz{‘ﬁg)nac?f s

T

(41)
A 4 * % %
<HWD = 228380+ 33 G0+ 187 )¢y |

share 1) Gl _g_(;zfﬁ\)—i— 4 CO\JM'—_‘ <E,=E\E}l€;=’f> ;
After substitution of (41) into (39) one gets:

€ = O%uey, W= el=GY+2y8 4 (42)
This coincides with eqs.(6) and (15),

Thus, in our model the APM gives a true answer coinciding
with the result of the PRM. A natural question arises how this
iz Telated to the general coneclusion (see Ref./2/) that the CM
always results from eq.(39). The answer is very simple and con-
gists in the following: in the gbove mentioned paper the second
term in the right-hand part of eq.(39) which renormalizes a mean
value of the Hamiltonian was omitted with no good grounds. Indeed,

in the case of neglecting this term we obtain, instead
of (42),the following:

guﬂ = ‘2'5/S G;}, {FJ‘-)},P{CEF*‘T(WH“ ':E I{tf?)mr‘fhrf ‘

And after variation over cﬁ; with the additional condition (40)

we find:

Eop= WS o W= s bt =W -2l 2> b-<65] |
= g{_‘;}' = "::F;l (f}) }_}lf Ch.r’ »

As we have shown above (see formula (26) etc.), it leads to the

CM equations.
CONCLUSION

The comparative analysis of different approximate methods

for solving the nuclear rotation problem studied here in the

framework of the simple model confirms the applicability of such
rigdrnus, in the sense of quantum character of rotation, appro-
ximations as the particle plue rotor one and also both the accurate
and approximate projections. Meanwhile, comparison of the exact
solution with the semiclassical cranking model gives grounds for
serious doubts as to applicability of this very popular method

to the system with the odd particle number, From this viewpoint,
a quite good agreement between the numerical calculations carried
out in the frame of the CM and the experiment /4/ seems to be
hardly explainable. Of interest is a further study of the approx-
imate methods based upon much more "rich" models including the
pair interaction and containing, at least, two integrals of mo-

tion (momentum and particle number).
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