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The motion of nonrelativistic system of a point-like
charge and monopole is considered. Lagrange and canonical
formalism free from difficulties of the usual Dirac theory
with a string i=s established without an introduction of a
potential singular along a string. In particular, from the
very beginning the theory is inveriant under rotations.

Quantization of the equations of motion was carried
out by standard methods. The Dirac condition % e ¢
(n-integer) is obtained as a consequence of the quantiza-
tion of the system-s angular momentum projection on its
symmetry axis.




1.Introduction

In 1931 Dirac/q/ put forward the suggestion about the
existence of a magnetic charge - monopole besides an elec-
tric one which would imply an elegant symmetry between the
electric and magnetic properties of matter. A remarkable
peculiarity of the Dirac theory is the condition

Eg fx e

=J- = — . =0 T} X %

e T R X, -

( €& and _% - electric and magnetic charges; the system
of units W =C =1 is used) which provides an explanation

for an empiric fact of the charge quantization.

Unsatisfactory feature of the Dirac theory is, however,
the necessity of an artificial introduction of singularity
lines for an electromagnetic field (Dirac strings) which do
not correspond to any real physical peculiarities of the sys-
tem. The point is that the equations of motion for the charge
in a Coulomb magnetic field of the monopole cannot be repre=-
sented in a canonical form in an ordinary way. The latter is
necessary for the transition to quantum mechanics.

To avoid this difficulty Dirac replaced the monopole by
half infinite and infin%ﬁely thin solenoid with the end at
the point of monopole location. The vector potential of such
solenoid with the end at the coordinates origin is equal to
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( Y - a unit vector in the direction of the solenoid) and
the magnetic field

- T. ¥ T g
coincides with the monopole field in all the points except
the l,pnints arranged on the solenoid itself (string) where

' is not equal to zero and singular.
The classical equation of motion for a charge in the

magnetic field (3) coincide with the equation of motion in
the infinitely heavy monopole field for all trajectories




not intersecting the string. At the same time one can obtain
these equations from the standard Lagrangian
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andproceed then to Hamiltonian formalism. Here one should,
however, impose additional (not following from the action
principle) conditions which exclude the trajectories inter-
secting the string ("Dirac veto"). One should emphasize that
the Lagrange function (4) is not invariant under rotations
since it includes the fixed external string vector V .
The "Dirac wveto" restores this invariance.

Further technical complications arise in the Dirac
theory when the motion of the finite mass monopole is con-
sidered. In this case besides whith the coordinates of the
monopole it is necessary to set an infinite number of The
coordinates of the solenoid points - the string variables.

Dirac shnwad/E/, however, that if "Dirac veto" is
fulfilled non-physical variables of the string are ex-
cluded from the equation of motion. Hence, the classical
theory of monopole with the string does not contain a real
difficulties though seems to be not quite satisfactory
from the aesthetic point of view. But the introduction
of the string in classical theory is superfluous if one
refuses to represent the eguations of motion in Lagrange
' and Hamiltonian forms that is required for quantization
only.

The influence of the string is completely revealed
in quantum mechanics in which the probability amplitudes
are defined by integrals of @pYp {L SS along all the
trajectories, where is the action corresponding to
Lagrange function (4). In this case contributions of the
trajectories passing from different sides of the string
appear to differ from each other leading to the Dohm-
Aharnnnvf3/.effent on the string. Only when condition (1)
is fulfilled this effect disappear and the string becomes
unobservable so that the invariance of the theory under
rotations is restored/4 .

4

Thus, condition (1) belng the most attractive aspect of
the monopole theory seems to be tightly conneted whith the
usage of the string for introduction of which one does not see
any real physical grounds and which appear only at the inter-
mediate stage of the consideration. This circumstance created
numerous attempts to modify the Dirac theory in order to neu=-
tralize in any way the appearence of the string. However, up
to now no variants of the monopole theory have been suggested
which would not include the string or other anomalies casting
doubt on logic and consistency of the theory.fwzf

The aim of the present article is to establish Lagrange
and canocnical formalisms, not containing such anomalies, in
nonrelativistic theory of the interecting point-like charge
and monopole. In this connection me should note that all ba-
sic features and difficulties of the Dirac theory already
arise in this case.

In Sec.2 the classical equationsof motion of the sys-
tem in question are analized. Then the Lagrange function is
introduced leading to correct equations of motion for the
all trajectories without any exceptions. This appears pos=-
sible due to th%Ehnice of the collective wvariables similar
to those which are used, for instance, when the motion of
a symmetric top is describedfsj, The most Important peculi-
arity of this function is the absence of external parame-
ters like the string vector VY owing to which the invari-
ance of the theory under rotations is obvious from the ve-
ry beginning. The standard means allow us to proceed to
canonical formalism without any complications. In this
case for the Hamilton function and other dynamic variables
the expressions obtained correspond to those which in the
theory with the string are obtained by using vector poten-
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which was considered by Bchringer/g/'rather than the Dirac

potential. The connection of this circumstance with the req-
quirement of the invariance under rotations is revealed. '

(5)
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Tn Sec.? the transition to quantum theory is performed.
Condition (1) arises as a consequance of quantization of the
angular momentum projection on the symmetry axies of system.

Tn Conclusion 4 comparison of our and Goldhaber-s 7
approaches is presented.

2.0lassical Theo

41, In nonrelativistic limit when, in particular, the ra-
diative field may be neglected, the motion of the system consis-
ting of a point-like charge and monopole is described by the
equatlons

- (6)

where ‘1"«'-‘11"' ‘t& y YU = “FE : '157-'15.4"\55. 5
It is seen from these equations that the total momentum W\, \J, +
*J“Liﬁﬁ- of the system is consered and the centre of inertia
moves freely. For the relative motion from eq.(6) we obtain
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( ’S'JL ~ the reduced mass, L"-"L’T- ‘?] )e il
Both kinetic energy of the relative motion and'lLJ| are
easily seen To conserve. However the direction of the
vector |, changes in the process of motion. The latter is
connected with the fact that although the sum of the inter-—
nal forces i# equal to zero the total moment of these for-
ces does not vanish. Such a situation is not quite ordinary
in Newton+s mechanics, where a interaction forces are direc-
ted along @ straight line connecting the interacting particles,

but it, nevertheless, can be described within a framework of

analytical mechanics.

To achieve this let us rewrite the equations of motion
in a form more convenient for the futher. Two purely kinema-
tiec relations can be obtained directly from the equality
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Those relations are:
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Subssituting (10) in (?2_;& obtain equations

S‘l;i 2 5\,\%(} (11)
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If one introduces the vectcr/7’a/
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eq. (12) with the account of (9) may be represented in equi-

valent form
_Cl_l: (‘14}

dt
Now we-1l derive eqs. (11) and (14) by means of the
variation principle. The motion of the system under conside~
ration consists in changing of the distance " between the
particles and rotating it as a whole under the action of a
pair of internal forces. We-11l denote the angular velocity
of this rotation by + Then




TST—_\';.‘"C +‘"C[9_?11 (15)
and e€qsS.(11),(14) may be obtained from the Lagrangian
ey &L
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In fact the radial equation corresponding to (16) has a form

Sﬂ*‘i = Su*f.. [Q ﬁ]& (17)

But due to (15)
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as a result of which ("I?) coincides with (11). Then

L L\u Pj o

The ﬁerivative (19) with respect to time is determined by
the behaviour of Lagrange function (16) under rotation of
the system through the infinitely amall angle NS

L Bl Wk
'U:'Ti_ '}u) (20)

But the Lagrangian (16) is a scalar, which is expressed by
vectors ?L and only characterizing the system itself,
and does not contain in contrast to (4) any external fixed
parameters. Therefore it is invariant under rotations and
(20) reduces to (14). The wvector j in accordance with the
mentioned here should be interpreted as a angular momentum
of the system.

Thus, the Lagrange function (16) satisfies all the reg-
uirements following from homogeneity and isotropy of the
space while describing a closed system.

mugqh-.;;;r,_v_v.Hu

Now proceed to the Hamiltonian formalism. For this pur-
pose one should set explicitly generalized coordinates and
veloeities of the system. To achieve this we introduce the
reference frame K, strictly connected with the system of the
charge and monopole, at the same time with the inertial cen-
tre-of-mass frame K. This frame rotates with respect to K
with the angular velocity _S—)_ and the orientation of its
axes with respect to K axes is given by t'-h:l:'ae Euler angles DL

?J B/ /%, 1t is patural to -ehoose ths Z' axis of the ro-
tating frame along the systemes symmetry axis - a line connec-
ting the charge and monopole. In this case the angles ¢ and
coincide with the angles \? and 9 of a spherical system of
coordinates. At the same time, as it will be seen below, the
angle \J’ disappears from the classical equations of motion, so
that the three variables ‘U , d , are essential gemeralized
coordinates in accordance with a true number of degrees of free-
dom for the classical system. ; ;

Using kno components of the angular velocity Q
along the axes of the moving reference frame we obtain

- S G s Y wede :
from which we find canonical impulses
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The equations of motion which are derived by variation of
the action corresponding to the Lagrange function (21) over T ,
J.. , and are equivalent, as can be easily seen, to egs. (11)
and (12). While the variation over K provides a trivial rela-
tionship dP /tH‘. Q0 only. However, the presence of the cano-
nical impulse Wwill play an important role in quantization.




In an ordinary way the Hamiltonian function is obtained
from eqs. (21) and (22)

I S - Feotg)
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Components of the vector j along the axes of the fixed K
and moving K'reference frames are also of interest. In the

- . T
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from which Poisson brackets for the angular momentum compo-
nents follow

i"ﬁ;jﬁ:‘&;}&}jﬁ ; %ﬁh:fg = (ea?
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As it is seen from (26) the canonical impulse PT _has the me-
aning of the projection of the angular momentum '1 along the
system.s symmetry axis

¥}
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Taking into account (24) and (28) the Hamiltonian function
may be represented in the form

—_— ’3 &)
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Finally, write down the components of the kinetic momentum
of relative motion P T.n‘)' alcng the axes of the frame K

(&)
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where © is the momentum at ﬂ': g Pi =0 Do
Now compare obtained expressions with those arising
from an ordinary theory with the string. It is easily seen
that they practically coincide with those that follow from
Lagrange function (4) with a singular Schwinger potential
with the string directed along the Z axis of the K frame.
The term £ *E'H in (4) equal in our designations to

T4 '—'—-%(;‘Lw;gwl) (31)

in case (2) and
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in case (5) should be compared with the .term
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in (21). All three expressions differ only by terms, which
are the total derivatives of angular coordinates with res-
pect to the time and lead therefore to equal almost for all
trajeqtories equations of motion. (As, for example, the e
coordinate is not a simple function of the point(while going
round the ¥ axis it changes by 2x), the addition of the




term J. to the Lagrangian changes, strietly speaking, the
equations of motion. That is this addition causes the appea-
rance of a magnetic field which is not equal to zero along

¥ axis only.) Nevertheless, the canonical impulses and the
expressions H , § , P appear to be, generally speaking,
different. The latter is essential for transition to quanfum
mechanics.

Tt is important to note that neither (31) nor (32) have
by themselves invariant forms under rotations and can be rep-
resented in contrast to (33) as a scalar products without in-
troducing fixed external vectors. However, (32) leads to the
difference only in the impulse F} , while (31) distors all
the expressions discussed. As a result the quantum equations
obtained in the theory with the Schwinger potential also ap-
pear to be closer to the true ones than those cbtained by
using the Dirac potential.

2.Quantum Theory

To proceed to the quantum theory the classical function
of Hamilton should be substituted, in accordance with a com-
mon rules, by the operator

ha‘ ey .___‘t
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H = 9. g_i“vti (34)
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In a similar way, instead of (24) we have operators
A H M :i.-:]- '-jl r.-\} : r'\.l
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satisfying the commutation relations

i%;}%ll = Lt"!;\sf‘ ) \-%L,Fy‘l =0 (39)

Besides, it is obvious that

= M i il o
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Hence, the angular partYthe relative mgtion wave funcy

tion is an eigenfunction of the operators 'f' > U; and ﬁ_"j .
From the theory of representations of the rotation group it
is known 2 that eigenvalues cf these operators are equal res-
pectively to j(j+1); m,ms==j, =j+1,.04, J,where j is a integer
or half-integer number and the eigenfunction coinecide with the
matrix elements of the operator of finlte rotations

o o T
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Now taking into,accourtt the fact, that the eigenvalues of the
operator f:’ :ﬁﬁ coincide with - g%. , we come to condition (1).
Thus, in the monopole theory there % & pemarkable relation
between the space and charge properties of the éyﬂtmn.

As it follows from previous discussions, the wave func-
tion of a relative motion depends on a new variable 'X - the
angle of the rotation around the axis of the systen%rmmetry.
We emphasize once more that only by virtue of introduction
this variable it is possible to establish the theory in an
obviously invariant under rotations form. Nevertheless when
- %X -y is fixed the dependence on Y comes into the phase
ufqghe wave function  only and disappears from all matrix

elements.

Two classes of charge - monopole pairs exist depending
on whether j is integer or half-integer. One of them corres-
ponds to the integer j-s and is deseribed by the simple fun-

A%




ctions - anﬂ.‘x . The parameter -%ﬁt may be a integer num-
ber only in this case. The other class corresponding to . th%J
half-integer j-& is described by two-valued functions and
is a half-integer number. The appearance of two-valued func-ﬂ
tions seems surprise in considering the system consisting of
spinless particles, however within the framework of nonrela-
tivistic quantum mechanics there are perhaps no arguments ex-
cluding this possibility. At the same time in the relativistic
quantum field theory, as Schwinger bellevef /, only integer i%ﬂ
are allowed. s
Finally, the operators

\3 ‘3 »i =3 +hiLM?i' T 'd}ﬁhg) (42)

change the eigenvalue of the operator P} = ‘n.)j by one unit and
thus connect the wave functions of the system of the given class
with various values Q—’Dl- . '

A%

4.Conelusion

The work of Goldhaberfzz, where, in particular, the role
of the-conserving vector 3 is emphasized, was of great impor-
tance for the author while considering the problems of this ar-
ticle. At the same time there is an important difference bet-
ween Goldhaber's and our approaches which is worth of a more
detailed consideration.

Having introduced the vector (see (13))

g = - %'ﬁ : (43)

the author of the paper/?/ considers it (in direct inconsis-
tence with its real properties) as a angular momentum with
independent degrees of freedom and assumes, in particular,
that

S hk=-800 S (44)
%‘S,’JS'}% ha?ﬂ- %

The system of charge and monopole is considered to be essentia-
11y unclosed. In this consideration the angular momentum G is

14

asepibed to the (staticl) electromagnetic field. As Wilson’ 1/
noted, the quantization of this angular momentum in units of

a half Planck constant leads to condition (1). Goldhaber's
arpuments are close to thcseiff Wilson in this point. It is
clear, however , that the asSmption about the character of
guantization of the additional angular momentum § is arbit-
rary since its properties in fact remain unclear. Thus the
basic relations (44) in the theory of angular momenbtum do not
follow from definition (43) but simply contradict to it.

From our point of view the consideration of § as an in-
dependent angular moanentum is incorrect. There exists only the
angular momentum ﬂ of a closed system, consisting of a charge
and monopole. To make this statement clearer compare our system
with the system of two electric charges. The electrostatic ener-
gy of this system may be represented 1n two forms: either as
the energy of an electric field t_ e t distributed in space
with density %‘E~t1 or as the patential energy of the charges
interection. In the latter case it is expressed through the va-
riables (coordinates) of the particles only, and the static fi-
eld appears to be completely excluded from the consideration.
Therefore the nonrelativistic two charge system is closed.

There is a similar situation in case of the system of a
charge and monopole. The angular momentum of this system be-
comes equal 3 \_L?] %ikhafter exluding static fields ana-
logous to the energy of %wo charges system that gains the ad-
ditional term E.EL;“E « Then, we again deal with the closed
system of particles.

In both cases only the regarding of the radiation field
necessary for the transition to relativistic comsideration re-
quires the introduction of a new degrees'ﬂf freedom for the
photon spin description.

Finally, I am sincerily grateful to V.N. Baier, A.I. Va=
inshtein, V.F. Dmitriev, V.G. Zelevinsky, O.F. Sushkov,

L.M. Tomilchik, V.S. Fadin, V.V. Flambaum, S.A. Eheifets,
I.B. Khriplovich, E.V. Shuryak for their attention and use-
ful discussions.
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