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Abestract

The model for multiple production of hadrons
the high energy collisions and in e%e™ annihila-
;ion is proposed., The thermodynamics of the excited
hadronic systems is obtained. The collective inter-
action of secondary hadrons is treated with the help
relativistic hydrodynamics, The obtained spectra
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I secondaries are in good greement with the data
on various inclusive reactions in the energy range
10-70 Gev,




NMULTIPLE PRODUCTION IN HIGH ENERGY COLLISIONS

E.V.Shuryak

l.Introduction

At high energy of colliding particles the
multiple production processes become dominant, The
complete dynamical treatment of these reactions
encounters difficulties connected with the very
complicated character of the interaction of nume-
rous secondary particles, The statistical model
originally proposed by E.Fermi /1/ and developed
further by I.Ya,Pomeranchuc': /2/ describes rather
well many features of the phenomenon /3/.

As it was noted by L.D.Landau,the simple
statistical model is inconsistent: on one hand,
the strong final state interaction is assumed to
cause the thermodynamical equilibrium of the se-
condaries; and, on the other, they are treated as
'an ideal gas of independent particles., The account
of the collective interaction of secondaries can be
made with a help of relativistic hydrodynamical equa=-
tions which can be used if the mean free path is much
smaller than the whole system dimensions: the same
condition as for the applicability of thermodynamics,
The solution of these equations obtained by Landau /4/
gave the description of multiple production in agree-~
ment with the data available by that time, Such predic-
tions of this theory as the composition of the seconda-
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‘ries, the transverse momentum distribution and its
practical independence of initial energy, anisotro-
py of angular distribution etc, have been proved
by the later experiments., But because of some quan-
titative disagreement of these results with modern
data and the development of new models the hydro-
dynamical model turns out to be almost forgotten,
The thermodynamical model developed by R.Hagedorn
and J.Ranft /5/ is in some respects close to Landau
theory. The momentum spectra of the secondaries in
this model are the "thermal" spectra transformed
into the moving with a velocity V c¢oordinate sys-
tem and averaged over \V with the weight func-
tion ‘f(bf). This function is introduced for the
account of the "collective motion" and it is not
determined by the model, but by the fit to data,
The spectrum in Tandau model is of the same kind,
the role of the weight function being played by
the hydrodynamical velocity distribution, Hence it
follows, for example, that the weight function is
the same for different particles which was indeed
discovered in the fit to the data on T, K , P
production in the framework of the thermodynamical
model /5/.

- Let us single out two groups of secondaries,
The first group contains the "throughgoing"
particles, namely, the fast ones with quantum
numbers of e¢olliding particles, for example, lead-
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'ing protons or isobars (and their decay products)

in the PP collision, The second one consists of
the "new created" particles such as T , K™, P
in the PP collision. The present paper is devoted
only to the "new cre&ted" particles whose spectra
are assumed to be determined by the intense final
state interaction.

The following. two points are considered in a
new way as compared to Landau's original work:

a) The excited hadronic matter in /4/ was
considered as equivalent to the ultrarelativistic
ideal gas, In section II th~ thermodyﬁamical
description of this system with the account of the
strong interaction is obtained,

b) The solution for the one~dimensional
expansion process and estimates for the three-di-

mensional one were given in /4/., Here (section III)

we obtain a more general solution, The obtained
spectra of secondaries are compared to the existing
experimental data on negative particle production
in the PP collision in the energy range of 10 -
70 Gev (sec,I¥), In section V the model is applied
to the lepton annihilation into hadrons (for /
example, ete” hadrons). Some general discussion
of the model is presented in section VI,




II. The Thermodynamics of the Excited Hadronic
Matter

We use the method originally elaborated by
E.Beth and G,.E,Uhlenbeck /6/ in their treatment of
the pair interaction of partiélas in the nonideal
gas (see also /7/). The main idea of this approach
is the counting of the number of states inside the
normalization volume with the account of the inter-
action, The wave function of the £ —th partial wave
at large distance 7 between the particles has the
form 1If('t') ""-—1-51'!’2(;3(1‘ J(p)) where dg, is the
scattering phase and P 1is the relative momentum,
The boundary condition ¥ (R)= O picks out states
with pR+ §(p)= nm , (here R is the radius
of the normalization volume). If one changes the
sumnation over n to the integration over P one
obtains the following expression for the part of

the partition function connected with the relative

motion:
£(p)

Z:%'gzc’*i)f/?* )‘3 "'dP (1)

If there is a resonance in scattering at some
relative momentum p,  theh i(p) changes rapidly
in the vicinity of P, . One can see that its contri-
bution to (1) is the term €XP[-E(P)/T] , the same
as for the bound state with this energy. This leads

to the following conclusion: in the study of thermo-

dynamics of excited hadronic matter one has to treat
resonances on the same foot as stable particles.This
fact has been pointed out by L.D.Landau (see /8/) in
1956 in the discussion of the role of the isobar in
the statistical model. But the experimental data
available by that time were poor, few resonances
were known and this idea was not used for the study
of the hadronic matter thermodynamics,

Now there is no theory of strong interaction,
but the data clearly shows the resonant character of
the low energy hadronic scattering, We assume the
scattering phase to be the sum of terms corresponding
to different resonances, We also assume that the mani-
body forces can be taken into account with the help
of manibody resonances, Let us add that this approach
is close to method of quasiparticles which is very
often used in the study of the thermodynamics of
various systems,

Let the density of resonance states of mass M l
(spin and isospin states are also included) of |
fermions (5: 1 ) or bosons (or:—i) be 9(_;(’m). Then
the energy density and pressure are given by (E=Vpim’) s |

- 3 [am goim) 4, efople) s 6T
p =3 Jam gsm) [ & £ [erp(E)+6T" 5




With the assumption of the asimptotical equi~
valence of the number of states of the excited had-
ronic cluster ("flre-ball") with 5(“4). R.Hagedorn/9/
has obtained the following expression for at
high masses wm > |, '

=

~5/2

o(m) - ém " exp (am) (4)

Here q and 5 are some parameters,

For the description of hadronic collision with
energies available at the modern accelerators there
is no need to know the ¢(m) for very high masses,

On the other hand, in the region in question

2 Gev the majority of the resonances are
already discovered, Thus, we use no assumptions
concerning ¢(m) , but simple parametrization of
the data, The expression (5) fit the data at m<l,2Gev

but we prefer more simple parametrization

p(m) ~ m% (5)

which also describes the experiment in this region
of mass with 2 = 3, but leads to much simplier

equation of state - the fact of great importance
for the solution of hydrodynamical problems.

Let us note, that as ¢(m) is a rapindly in-
creasing function, so the main contribution to (2)
and (3) is given by the region of masses where
e)(p(ﬂﬂ)»»i and the difference between Bose and
Fermi particles can be neglected,

|
|
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The substitution of (5) into (2) and (3)
shows that both ¢ and D are proportional to
T £+5 Thus, the sound velocity C defined by

2_dp (6
LA Ag (6)

turnes out to be temperature independent, Its value

can be obtained by the direct calculation of in-
tegrals (2), (%), but it is more convenient to use
the thermodynamical identities which lead +to the
following expressions for the energy density,
enthropy and pressure:( A is some constant)

LA & - *+ 5 v _i --T—_‘f"’S ('7)
f: =~ & 3% y S=4 2+ 4 it / P”';I’#f
and thus _
: 1
LRI 8
6# BT R B (8)

The initial energy density in the particle
collision with energy E (in the C. M, system) is
proportional to E% because of the lorentz contrac-
tion of volume /1/. One can see from (7) that the
initial temperature very slowly increases with E ,
so the parametrization (5) cam be used up to
energies of the order of some hundreds of Gev, At
higher energies the C?% becomes temperature de-—
pendent and the behaviour of the solution of the
hydrodynamical problem changes., We do not consider
this energy range in the present paper,




1IT. The collective motion of the secondary
particles

The general approach to the problem as well
as the qual itative features of the results in this
paper are the same as in the Landau theory /4/. So
we first remind briefly few essential points of
this work, '

1. The cluster of excited matter created in
the collision has an initial form of thin disk, Its
transverse dimensions are of the order of the radius
of hadrons VH;? , while the longitudinal one is )
times smaller,where ) is the Lorentz factor of
colliding hadrons,

2. The strong interaction in this cluster
causes very small mean free path, so the hydrodyna-
mical equations are valid,

5. The strong interaction disappears when
the distances between particles approach VH;.,'this
corresponds to the fixed final temperature of the
order of mg, .

4, The process of expansion of the cluster
of secondaries has predominantly one-dimensional
- character due to its initial form,

5. The value of transverse momentum of secon-
daries is determined mainly by the.'"thermal motion"
corresponding to the fixed final temperature,
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Let us write down the relativistic hydrodyna-
mical equations which has the form of the energy-
momentum conservation lows: '

ik |
Ay (9)
ox K
The energy-momentum tensor T ‘“ is determined by
7:#2 e (E-f' P)L’{,_ L{K L Jogfl{ (10)

where ¢ and p are energy density and pressure in
the rest system of the volume element, ({, is its
4 -velocity.

During the expansion the matter is much
more strongly accelerated in longitudinal direc-
tion than in transverse one., SO one can adopt the
following way of the solution of (9): to solve
firstly the averaged (over transverse coordinates)

equations (9) with ( = 0,1 (an axis X is taken

in the longitudinal direction), In this stage the
transverse size of the system 7,(x,+ ) at dis-
tance X¥ from the collision place at the moment
is arbitrary, but it is determined in the second
stage of the solution from the transverse equa-
tions (9) in agreement with the solution of the
first stage,

The averaged energy-momentum tensor (i(=0,I)
is

TK:ST,{ dydz = Wi[f?ﬂ)*“ "W Pg‘k’] (11)

1k




The equation (10) with ( =0,1 then becomes

fa%"ﬂ a"-fﬂi .faTbl ;T'H'
+ - - (12)
vl el el AR

Let us consider longitudinal motion as ultrarela-—
tivistic one and neglect the slow transverse one,
Then . . '

mi : Hu iN-_‘T_ :

Utz U, K U T (13)
Substituting the equation of state (8) into (12)
one obtains in the reglon.‘fzﬁf A the fol=-
lowing equations:

(U o i S G oyl e o8 i L i

:a"{ (fziu )+ 2 1xcC? ?j(i?-'») G (14)
7 I A a0 [ {+c? D o q?

A G o Rt et "aq 27;-‘):0 340

Let us introduce new variables
. ; &2 A
=1 g O ) f_‘i L i
d=glatX - gLl = . La(E2]) (o)

where A 1is the initial longitudinal dimension of
the system., Let us follow Landau and assume that

:f.%ﬁ_

where-f is slowly varying function (which can be
proved with the solution obtained later)., Excluding
_F from (14), (15) we obtain equation

1+ 50+ S (B (¥ =0 ao

(17)
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It can be solved with the help of two-parameter
integral

P = A VB2 (1+8)(EE) + Bp + A (19)

and the initial conditions ¥~¥ at 4 f~1 with the
following result:

212
P= &+ LG B - GBS (20)
At the beginning of the expansion AR ?E
where ¢, is the initial transverse dimensions
(v Wi d m;ri Y. At tine t >> ‘Z'_L the transverse dimen-
sions can be estimated with the help of transverse
equations (9) which we write in the following manner:

-_— 02 272
I;"' £t 7; LRl )
2 A

Substituting here T °%= £y,u, NEL(Z 51 . THeass
and account for (17) one obtains:

%2 o £ % e

This result can be used in (20) and the energy den-
sity dependence on X and T is given by

fa )

i ( V oo [ +

e exp[ eyl (—‘——}? 2/9] (23)
As it was mentioned above when some low densi-

ty 1s reached the hydrodynamical expansion comes to

an end and particles fly out independently, At

|| 2
this moment energy density is also fixed, £ ~ T: +£ o

e
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Putting § = E} in (23) we obtain the trajectory of
the end of the hydrodynamical expansion., We consider
the case 414;3 and expand the result up to the
terms of the order of Gﬁ[ﬂ)z .

Wl Y P, AR (24)
& ("é:jrzi ) = [He)pd e 2p

The expressions f&/&)wb’ ?,‘['?"a/h)-xy can be substituted
here, The particle distribution is given by

AN = mnu ] df (25)

where N 1is the density of particles (in the rest
system of the volume element) and it is fixed at the
end of hydrodynamical expansion, The (17), (22), (25)
lead to

3
and putting here (24) we obtain the final result
Y.
( Ay R f
ol ~ = € 2 dd = Y(d)dd (27)
where -
I (28)
2(l-c¥]

Due to simple connection between ( and hydro=-

dynamical velocity ! (17), this expression

*In order to account the symmetry fnr'the exchange
X< -X we write Hﬂgcho{;l/{~§ha{ .

1 e ™
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is the distribution of the particles over the hydro=-
dynamical velocities, Let us add that EP(&) (27)
corresponds to the phenomenological weight function
of the paper [/5/.

It is interesting to compair the proposed so-
lution with that in /4/ which has been obtained in
the following way: one- and three-dimensional stages
of the expansion process were treated separately and
the found solution were "sewed" together. The exact
solution of one-dimensional problem has been found
by Khalatnikov /10/, but only estimates remaind for
the three-dimensional problem, The numerical solu-
tion for ¢% 1/3 where obtained by G.A.Milekhin /11/.

For T34l I S BEE (I8), (15)
coincide with Landau one-dimensional equation as well
as the solution, If one takes T, = t@ (where ( is

some fixed angle) than one obtains the equations for

"konical" expansion, The estimates in /4/ for this
cage (Ut%a const s Sut*~ ¢const corresponds to
the neglect of the second term in (14) and in the
enthropy conservation low following from (14),(15).
The found solution shows that they can not be
neglected, it causes some differences in the results,
The numerical solution /11/ give UW[d) of the form

(27) with L:z'1,12 5MJ’ which agree rather well
with (29) (at ¢2=1/3) [L=lu).

15




IV. Secondary particle spectra

The account of "thermal" motion inside the
moving volume elements is also necessary for the
description of the momentum spectra of the secondar
ries, Let us define FJ and j by the following
expressions

E=mohpek] P},:“’*S’«P h]; pL=mshy  (29)

One can see that transition into moving coordinate
system with & velocity V- th« (in the longitudinal
direction) changes }3 and J as follows:

fre Bl o Rt 4 (30)

The density of particles with some quantum

numbers ( and momentum, ﬁ? (in the rest system of
the volume element) is

o) B4R foie )= [explR) + 6] e

Here J = 1 for fermions and -1 for bosons, 9 is the

fog T

number of internal states of. particle ¢ , E = Vpm’,

The application of variables (29) helps us to reach
the final expression: (F (4,E) = -E, (m(,!!q(d-ﬂ)d«. f) )

h(p-d) 3
V.= {fecaf w0) B2 da | 22Y G2

In this formula'if(d) is determined by (27). The
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ch(p-)

: originates from the transformation
of LJHD :fxf is the total volume odeifferenﬁ ele=
ments taken at the moment of the end of hydrodyna-
mical expansion, As far as these moments are dif-
ferent for different elements, |/ has no direct
geometrical definition, The total energy of "through-
going" particles (see introduction) is unknown, S0
one can not normalize (32) and \/ remains the free
parameter of the model. Integration of (32) lead to
the following expressions for the average particle
number and their average energy (for Bose statis-
tics)

?r.m:_'r
/V Wbl 'L 271 Z:i %Kz(%ﬂ) (33)
ol = I - M N mu
— T _1:‘; ZLLZ[3H1(_"E}1) % e Mi(“?)]
E =Texp(s) Z_,KZ(--—--E.M) Ll (34)
mil N T}

where K, are Bessel functions, At [=m,. one ob-
tains F a& 0,43 Gev which agree to the data at ac-
celerator energies,
Particles with "rare" quantum numbers such as

K~ and ﬁ can be created only together with one~
ther particle due to conservation lows, This fact
decreases the rate of their production, We treat
this point with the help of the phenomenological
method of the account of this effect proposed in /5/.
It is based on the idea that the probébility of the

17




reaction in question is the product of the probabi-
lities of their separate production,

Let the probability of pair production (partim
clea have quantum numbers ¢ &nd K ) be

AW § Tt F0 ) P f 4 e KL ol i
X QLEE&HEX gﬁ Aﬂp

(7n )3 (21)3
where K (J/, 4,) represents correlation between

particles, As far as strangeness (and barion number)
are concerved locally, K (« «,) 18 to have maximum
at d,:d, /5/ and can for the simplicity be taken
equal to t§fﬂ.‘dz)- Performing an integration over
d 3Pk’ ool ! one obtains:

o W, = {j[p(d){(as f{x} ____ﬁ_._._ (36)

where

J{ (Ee) 91{ter)j’

The sum is taken over all particles K which can be
produced together with { . The conservation of the
charge is not to be taken into account for it can
be transfered to accompanied pions,

At low collision energies (- | and accord-
ing to (28) L= C . Then Y(d) > J(d) and +the
spectrum (32) coincides with the results of the sta-
tistical model, Tt is known to describe rather well

(37)
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the data at low energies /3/, so although the solu-
tion found above were obtained for*jfgai , but the
result turns out to be true for a” close to 1, So
one can assume that the results (32), (36) approxi-
mately holds for all energies*,

As at high energies [, 1is large the maximum
of the integrand in (32) moves to the point «= f

- and the spectrum is mainly determined by the col-

lective velocities,

Let us remind that (27) has been obtained
for AP and (32,36) does not hold for the high
energy end of the spectrum. This region close to
the kinematical 1limit is connected with rare pro-
cesses of small multiplicity which are not described
by the proposed model, |

We have chosen three groups of data for the
comparison of the model with experiment: the de-
tailed spectra of various particles produced in
19,2 Gev PP collision /124 recently obtained in
Serpukhov the momentum spectra of negative partic-
les produced in 70 Gév }D*AF collision in forward
direction /13/ and the buble chamber data on the
procesaes'TﬁTﬁﬂ¥“/17/_ '

No adjustible parameters have been used in
the calculation of the form of momentum spectra,

* With the restrictions discussed in section 2,
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the final temperature 7}} has been taken equal to
pion mass, The normalization of the curves has been
done as follows: (32) and (36) has been multiplied
by the total absorption cross-section which has bea
taken to be equal to 31 mb for PP collision, An
~additional fauuc:'tscsrrﬂg"f3 has been introduced for the

P -nucleus collisions ( A is the nucleon number of
the nucleus)., Besides, the temperature variations
have been used for the normalization of the heavy
particle spectra for which the factor exp[ﬁ%(%ﬁ"%J]
has been inserted in (36). The following values of T
have been obtained in the fit: T,- = 0:90“%75:0-97%
at 19,2 Gev and T, = "1,13mMm, and Te'= 1,11l M, 8t
70 Gev*, Thus, the deviations from the expected
value W, are not large, The parameter |/ is &V,
and 9V _, respectively, where V = f%ﬁpm;j

In Figs, 1,2 the 7T and K- spectra are

compared with the data /l12/ represented asimﬁjg;dﬂ,
in the C.M,system as a function of P, and p, .
The invariant quantity F = E.%%?' as a function
of j} (see (29)) for P, = O is compared to the
data /13/ in Fig.3. The experimental data on reac-
tions ﬂ"ﬁ?-*'ﬂ*t /17/ are represented in Fig.4

and are compared with the predictions of the model

= _
. In this case the T value corresponds only to some

effettive normalization, because for pP-nucleus
collisions the model needs modifications, Let us .
also note, that the experimental precision of the
normalization is not high.
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(full curve), The J[  spectra clearly shows the .
"through-going" contribution, The model is also in
agreement with other data on reactions PP KP,P'P 21, K
studied in bubble chambers, The detailed comparison

with those data and the discussion will be present-
ed later,

V.l.epton's annihilation into hadrons

An example of such process is one photon anni=
hilation of electron and positron, the reaction
studied by ete™ colliding beams, The excited hadro-
nic system(is in this case nroduced by the decay of
a virtual photon)can be treated in the frame-work
of the same model, It is the geometry of the prob-
lem which is different here: it is not the "thin
disk explosion" as in the case of hadronic colli-
sions but rather an isotropic "explosion from a

*
The cross section of this_process falls with energy
ngt_slowly;th%n (energy)—z , While the reaction
e'e —e"e 3+ hadrons where hadrons are produced in
two photons collision, has even increasing cross
section, One may assume that the two photon colli-

sion does not differ much from the hadronic colli-
sion,

**The wvirtual photon polarization cause some unisot-
ropy but as many secondaries with large angular

momenta are produced, thig unisotropy can be
neglected,
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'point", This approach to the process e'e” “» had-
rons has been suggested by the author /14/ and the
solution has been found for the equation of state

0251/31 Here we present the more general solution

for any temperature independent 02.

According to /15/ another mechanism of one
photon e*e™ annihilation into hadrons is possible,
namely, the subsequent decay of the wvirtual photon
into the pair of pointlike particles ("partons"),
and their decay into secondaries with the two jets
production in the direction of primary "partons".
This case is similar to the hadronic scattering
studied above, so we shall not discuss it here,

The equations of spherically symmetrical
expansion process in the variables ‘tj E: t-7 at
+ > ? are similar to (14), (15)

Sl e (if?) (38)

| | 2 ;| _
2 (s47) 4 %—’—f—-e? (u, (39)

With the help of the solution obtained in sec-—
tion III one has the result

U~ eXpR G i g f,xp[ 2;1?— (l_) - 2(d4 !"}] (40)
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where _ '
r e -ﬁ_i{;,,,(fi'z?)ﬁx-,,gw&
011—2'&4(———-),,[}'2 Y R S Eori (41)
. +-1 £
and*gkgﬁ is the total e*e™ energy in the C.M,system,

The condition of the end of hydrodyna-
mical expansion is the following (for 4«<</f wup to
terms of the order of (d{f)z )

T
X% (Gric? i daoodz o (42)

The substitution of (40) into the expression of the
particle number

AN = nut'dy ~ exp(ﬁ;ﬂ 24 ) ol (43)
leads to*

_ Loy 2 " .
AN~ exp [ 25 & ~ 3_1..*_5.;(,)9( ) dlt ~ ¢ ()

where C/( ai) :1.s normalized by
Jdoe W ) =31 e 1 (45)

The momentum spectra of the secondaries is given by

nE
"Z M fdd Plje T 7{1#@0&@ SL {w sha) (A(&%’shdﬂ (46)

22Nt En

where i M 4 m o The modification for the case

* @Ee solutlon given in /14/ (expression (7)) for

c —1/5 coincides with (40). But there is a nu-
merical error in expression (8) of /14/, the
right one is glven by (44).
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of production of the particles with rare quantum
numbers can be done in the same way as in the pre-
ceeding section,

The mechanism of the production of primary
hadronic cluster in the virtual photon decay is
not quite clear, So its characteristics size A
(and X ) is not determined in the model and re-
mains free, No such parameter appears in the case
od hadronic scattering because here it is deter-
mined by the dimensions of the colliding hadrons,
Some estimate for the value of A is suggested in
/14/, May. be A1 is some characteristic energy
of strong interaction, something of the order of
1 Gev,

Vi. Summary and Discussion

Let us first ennumerate the most important
points of the present work, This is the deriva-
tion of the thermodynamics of the excited hadro-
nic matter with the account of strong interaction.
Then it is the solution of the hydrodynamical
problem describing the collective motion of secon-
daries, The results obtained are compared with
experiment and the good agreement is found.

In contrast to dynamical models of multiple
production in the proposed approach only very li-
mited and available information about hadronic
interaction is needed: namely, the resonance

2

gspectrum, On the other hand, this model predicts
only some averaged behaviour of the system, while
dynamical treatment can, in principle, give all
the details, But in the comparison of the exist-
ing dynamical models with the data many free pa-
rameters are used and the predictive power of the
model is not always clear, '

Let us note, that the proposed model has
some very essential point in common with the mul-
tiperipheral model: there exists an interaction
only between particles whose velocities do not
differ much, It causes some similarity in the re-~
sults: for example, the approximate d« = dp), /E
behaviour of the momentum spectrum of secondaries
at small « which is known to be the general
consequence of the multipcripheral approach,

The very simplified treatment of the
thermodynamics of the excited hadronic matter is
presented in this paper, for it is very appropri-
ate for the solution of the hydrodynamical prob-
lem, In papers to follow this point will be treat-
ed in more detail with the account of separate

resonances and conservation laws,

It is not clear now whether the "through-
going" particle production is caused by the peri-
pherical* collisions (and in this case the combined

*This word is often used in various meanings, Here
it does not mean just the process with small in-

elastisity, but that corresponding to a diagram
with one particle exchange, -
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peripheral-hydrodynamical model like /16/ is needed)
or they take part in the intensive final state in-
teraction similar to "newcreated" ones, So the study
of the region close to the expansion front is of in-
terest because the fastest particles are produced
there, The solution in this region is not important
for the spectra of the majority of secondaries and
is not treated in this paper.

For the application of the model &above the
energy limit pointed out in section 2 it is neces-
sary to obtain the solution of the hydrodynamical
problem for more complicated than (8) equation of
state, This problem can probably be solved only by
the numerical calculations**,

The solution obtained shows that by the end
of The hydrodynamical expansion the total size of
the system is large and grows with energy, Thus, as
it was pointed out by L.D.Landau the P -nucleuc
collisions are the collective processes similar to
two-particle reactions rather than the internuclear
cascade, The hydrodynamical model seems to be The
most appropriate for the trestment of these reac—

** If there appears many collision centres at super-
high energies, the model can be used for the das-
cription of separate centres (‘'fireballs™)., They
correspond to the collision energy of the order
of 10-30 Gev for which the model giwves rather
good description of the data,
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The author would like to thank 5,7 ,.,Belyaev for

his interest to this work and J.Ranft for the very
useful talk,
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