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Abstract

It is shown that in perturbation theory for the massive
Yang-Mills field there is no continuous limiting tramsition to
zero mass and the theory is unrenormalizable. These results are
the consequenee of the singularity of zero helicity (three-dimen-
sionally longitudinal) guanta interaction, the singularity
which is absent for the neutral vector field. The generaliza-
tion. of the radiation gauge to the non-zero mass case is built,
In this deseription the interaction of three-dimensionally
longitudinal quanta is extracted explicitly. The consideration
in this formalism makes extremely likely the assertion of the
existence of continuous limiting transition to zero mass and
of renormalizability beyond the perturbation theory.



I. Introduction

Experimental discovery of non-zero mass veltor mesons as
well as vector structure of weak interaction attracted the atten-
tion to the massive Yang-Mills field theory. In particular the
gquestion of renormalizability of the theory is being discussed
for a long time /I-9/. The point is that in usual description in
Proca formalism the vector :Eield propagator ,:3 / A / =
= (gﬂ. — A’/ )/A’z/fy tends to constant at high momenta,
that corresponds to unrenormalizability of the theory according
to standard classification. However as it is well known, current
conservation leads to cancellation at leﬁst'of part of divergent
terms., In the case of neutral vector boson these cancellations
ensure renormalizability of the theory. As to the massive Yang~
Mills field the question turned out more complicated and +the
- results of various works do not coincide,

The proof of unrenormalizability of the massive Yang-Mills
field given in the works /2-6/ is based essentially on the
transition to vector fields with Feynman Green function
‘2;u,/ﬁ”{~>£(€/ﬁ{ . However this transition was performed
incorrectly. The difficulty here is the same as in the case of
the massless Yang-Mills field where, as it was shown by Feyn-

- man /I0/, the using of Feynman propagator J235/4%“E demﬂﬁds
the introduction of fictitious scalar particles (see /II-I4/).
In spite of this substantial shortcoming of the works /2-6/

- Theilr main conclusion is correct from our point of view,since
the necessary modification does not affect the most divergent

terns.

Recently the works appeared where the radiative correc-



tions in low orders of perturbation theory are evaluated /7, 8,
15, I6/. It is proved that till the diagrams describing  the
process contain no more tham one closed loop, the power divergen-—
ces cancel out,

In the present paper the guestion of the limiting transi-
tion to zero mass and of renormalizability of the massive Yang-
Mills field theory is discussed. In the first part of the paper
the investigation is carried out in the frame of the usual
perturbation theory., The problems of zero mass limit and renorma-
lizability appear to be connected with the interaction of quanta,
three-dimensional polarization vector of which is directed along
momentum, In contrast to the neutral vector field the cross-sec-
tions of the processes with A such quanta do not turn to zero
at /u o, but behave in the first nonvanishing approximation
in general as Y2 7] . From this fact it follows that in
the perturbation theory there is neither limiting transition to
/Lc = 0, nor renormalizability.

In the second part of the paper we build the formalism
that is the generalization of the radiation gauge for the mass-
less field /I7-20/ to the non-zero mass case, Such generaliza-
tion for the neutral vector field is given in /2I/. This forma-
lism is based on the division of physical degrees of freedom
into three-dimensionally transversal (the helicity *I) and
three-dimensionally longitudinal (the helicity 0) ones, As it
is known three-dimensionally longitudinal component is absent
for the massless field., In contrast to Proca formalism our
description permits the continuous limiting transition to zero
mass, Only the interaction.verticeéﬁaongitudinal quanta appear
to be singular in mass, They do lead in the perturbation theory
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to the absence of continuity in mass at M= O and to the non-

renormalizability. The Lagrangian of the system is not a poli-
nome in longitudinal fields and, if it is not expanded in the
coupling constant, permits the continuous transition to zero

mass. At 4 = (0 +the longitudinal gquanta interaction is switch-

- ed off and we come to the massless Yang-Mills field theory which

is renormalizable., It seems to us very likely therefore that
beyond the frame of perturbation theory the Yang-Mills field
theory is renormalizable and all the amplitudes in the limit of
zero mass turn into corresponding amplitudes of the massless
Yang~Mills field. The renormalizability is understood as  the
possibility of elimination of all the divergences by means of
fixing of the finite number of physical parameters,

When the work had beén finished it becamé known to  the
authors that the analogous results were obtained-by Boulware/22/,

Slavnov and Faddeev /23/, by Tyutin and Fradkin /24/ in func-
tional integral approach.

2, The perturbation theory and current conservation

This section deals with the question of limiting transi-
tion to ‘/y = 0 and the renormalizability for the massive Yang-
Mills field within the usual perturbation theory. Note, that

- the isotopic triplet of wector fields éﬁfﬂ;yiinﬁeracting'with

each other and with isodoublet of fermions H4¢2E)is determin-

ed by Lagrangian
{/W/W /;" Gt gé //"”i'/f

gi',
%y:;gf,_g,é%g}/ﬁ

R W

(I)
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The equation of four-dimensional transversality é“j’i =0

follows from the equations of motion,

The description of neutral vector field is obtalned merely

by means of replaf.igment of isotriplet f by singlet ﬁ s the
field strength é/w = /z//w =§u£”d
As it is known the polarization of free vector particle

with momentum ﬁf‘, is determined by vector ‘;5;‘-’ which satisfies

the condition A/’aéf},‘ A, « It follows from this condition
that there are three states of polarization. In the frame where
= ( @, Q 0,/4‘? / / these states may be described Dby
vectors 5/57 (¢ = 12,3 A normalized by the condition
5 (x} __é‘&k
Vi /“ i
7, @)
£'=(2100), & =(4012,
(.. L) oyt £ 4l 4
€u—(/u:4f/4 Y e
C2)
where /u...(I y0,0,0). Emphasize that the singularity of 5 o
in mass is a consequence of the conditions a}’;e/i‘u =14
6:’:‘/6.(4') i cs‘&:’
Lo tioin !

The quanta in the first and the second polarization
states we shall call transversal (the helicity %I) and that in
the third state we shall call longitudinal (the helicity 0)

according to three-dimensional properties of polarization vec-

Rl ) s @
tors !(8 AR oS « The singularity in of the
) /'f/// /u

vector éf,, leads to the singularity of Green funcétion of the

vector field

S ke 2
V(K/—/L(-E__k.zaz{é‘ué-y R /é( éf}'*’_/“f%/ (3)



Matrix element of the process with # quanta is written

as follows

M =&, ()6, (K).. &, /A’///,/« G et ¢
Here the indices indicating the polarization and charge states
of the vector particles are omitted.

We shall consider the amplitudes of the processes in thg
first non-vanishing approximation in the coupling constant i;;
Matrix elements in this approximation correspond to the diagrams
without closed loops so called "trees". In aonaidafation'wé use
some ideas contaihed in the Feynman work /I0/ where massless
fiéldﬂ mainly are considered.

It will be shown that in the limit 4/ — { the amplitude
447' of process with #4 'Yang-Milla three—dimenaionally longz-
tudinal quanta behaves as /( Are . As it is known, in neutral
case the amplitudes of all the processes with the longitudipal
quaﬁta turn to zero at /{ o .

It follows from the mentioned result that, firstly, the
limiting transition to zero mass is absent in the perturbation
Theory for the Yang-Mills field. Secondly, the cross-sections
of the processes with four or more longitudinal quanta increase
with energy as it is clear already from dimensional considera-—
- tions, The rate of growth increases with the quantity of longi-
tudinal quanta, This fact shows the unrenormalizability of the
theory. Really, while considering  the radiative corrections,
we may pass.from.the'closad loops to the integrals of the qnanti-
ties exprese}ﬁmug%he amplitudes of the processes without radia-
tive corrections, The increase with energy of such amplitudes

leads to the divergence of dispersion integrals.



It follows very simply from above in particﬁlar that power
divergences are absent -in the amplitudes of the processes with
two-particle intermediate states, that is the processes determin-
ed by diagrams with one closed loop, Besides, the amplitudes of
such processes without external longitudinal quanta remain finite
at /u = 0 o

Below we shall prove the assertion of the singularity of
matrix elements in mass, The result is corroborated by  the
concrete processea- calculation, On the concrete example we
illustrate also the covariant technique /I0-I4/ for the mass-
less Yang-Mills field,

Consider the matrix element (see eq.(4)) of reaction
with /7 quanta, It is clear that the amplitude is the most
singular in the case of longitudinal quanta the polariza-
tion of which is determined by vector /qg/"‘-’ /"27/‘ .
Let the first quantum have such a polarization., Using the

transversality condition

Kjﬂ%/é/% ("f.}/ é‘-’ﬁ /Kﬁ//qu?”.g f"yaﬂ =3 & (5)

which results from the current conservation,we obtain for the

amplitude A the following expression:

ﬂ — _//% ?ﬂf{% /4’2:/ é‘(x /@/‘/& ‘?"7“* (6)

If all the other quanta are three-dimensionally bransversal
then at //( = O the amplitude uﬁyrturns to zero, that is in
this limit the matrix elements of the processes with one longi-~
tudinal quantum vanish., Note, that the singularity in /;7 of
tensor “A€;}43”}/4f due to the propagatprs of virtusl

bosons (see eq,(3)) is unessential as it will be shown later,
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In the theory of the neutral vector fieid interacting with
the conserved current the amalogous conclusion is true for the
processes with any number of longitudinal quanta, The point is
that in neutral case the transversality condition (5) may be
strengthened

A;%,,4%£;$/¢”ya; = /;!::41”’}%/ (7)

The transition from (5) to (7) is equivalent to the inclusion
of unph;y:sical polarizations (not satisfying eq. Audw = ) in(5).
This inclusion does not break the transversality conﬁition since
the neutral vector parﬁicles are not the sources for each other.,
The longitudinal part of the tensor “éa;”vﬂh is different .
from zero only in the case when the charged particles are in un-
physical states, Then it is determined by generalized Ward iden-
tity. In the Yang-Mills theory vector quanta are charged and
they are the sources for each other, so that it becomes impossib-
le to pass to unphysical polarization in the transversality
condition (5). |
Let us return to the expression (6) for-ué?/. Here instead

of physical vector of polarization é;?(%?/’ there is vector

-—ﬁ% Zég— nonorthogonal to momentum (in four~-dimensional
sense), So if one more longitudinal quantum,e.g. +the second

one, takes part in the process, then in the expression for the

matrix element

%
‘/d/: ?,.,Q/’,,L//‘{r /5/ / / /"{‘3 //{f /”/4/”/% o (8)

the term proportional to ’iéﬁa does not vanish in contrast
to the neutral case, This statement takes place under the con-

dition that the first and the Second particles may interact



directly with each other,

Thus the amplitude of the process with the emission of two
longitudinal quanta of the same charge turns to zero at /f/ — 4
and in the case of different charges it remains finite in the
limit /L{ sl

At further increasing the number of zero helicity particles
taking part in the process the current conservation does not leaq
generally speaking, to any new cancellation of singular in /U
terms,

Thus, in general case the amplitude of the process with #
longitudinal quanta behaves as /L("}HLZ at /{—,» % . The reserva-—
tion “generally speaking"™ is caused by the fact that at any num-
ber of longitudinal quanta there exist the processes in which
for example all the quanta are neutral; the amplitudes of such
processes are equal to zero at /l/ = ﬁ.

For the conclusion of the proof we shall show now that
the singularity in mass of tensor %@../ﬂ connected with
the propagators 2«# (see (3)) of virtual particles is un-
essential,

Feynman /I0/ noted that in the amplitudes of the processes
determined by the tree diagrams the "tails™ bf propagators
-—ﬁ/"u i’a/a ﬂz/fz“'/”z/-/ ma&y be omitted if all the exter=
nal particles are physical., We need the generalization of this
statement for the case when one of the external vector quanta
is unphysical. This generalization will justify the neglect of
singular part of .//é;,/%, ..},,:/,, in the above consideration.

For the proof we divide the diagrams determining  the
prloce;?,s (the tree diagrams are considered) into two groups by

the type of the vertices (see eq.(I) for Lagrangian)in which
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unphysical external quantum enters.

Fig.I

In Fig.I this quantum is represented by double line. (Here we _
do not consider the interaction with fermion field +the conside-
ration of which leads only to unessential modification of the
prooi ), Every shaded block determines the definite process with
one virtual and seme real particles (the lines designating real
particles are omitted in Fig,I). In particular the line endad in
block may correspond to the physical quantum,

At first we shall get rid of singularity in A which
arises from the "tail" of propagator corresponding to one of
virtual lines in Fig, I The contribution of the singularity is
equal to zero since it is proportional to four-dimensionally
longitudinal part of the amplitude of corresponding block. The
longitudinal part vanishes because of . (5) since all the other
particles entering the block are physical.

Now only the singularities connected with "tails" of
propagators of virtual lines inside blocks remain, Again every
block determines the process with one unphysical quantum. Thus

the above consideration may be repeatéd for this block and so
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on up to the complete driving out of "tails”,

Note, that for the above proof the limitation to the tree
diagrams was essential. The limitation allowed to deal with the
amplitudes of the processes having only one unphysical guantum.
Tn neutral case the transversality condition (7) takes place at
any number of unphysical quanta, That allows to do away with
"tai1s" in all the diagrams including those with closed loops,
Thanks to this fact the neutral .vector field theory is renorma=
lizable.

The question arises if there are no more cancellations of
the terms singular in mass besides those accounted for., We
caleulated matrix elements of annihilation of nucleon-anti -~
nucleon pair into two, three amnd four longitudinal gquanta in
the limit of // —.n-ﬁ . j:? fdund that the amplitudes are really
proportional to // .« The calculations are carried out
rather simply by means of generalized Ward jdentities and are
g.’z'.ven in Appendix. Note, that in spite of noncovariance oi pola-
rization ﬂescripfion the final expressions for amplitudes in
the limit of // —>(/ are covariant. |

In conclusidn of this section we would illustrate the
complications arising at covariant description of the massless
Yang-Mills field /I0-I4/ though it has no direct relation to
our work,

Let us consider the annihilation of +the proton-anti-
proton pair into pair of charged massless quanta /006} / e /5 4@ )—;;.
g fﬂ/ff 8 f+/@/ The reaction is described by two
diagrams (Fig.2). Since both vertices of the diagram A’D are

transverse in the 4-momentum of virtual quanta, itUs propagator
may be gauged arbitrarily, for example, by Feynman gauge ju%"?

)



Fig.2

(It corresponds to the general statement /I0/ of gauge invari-
ance of tree diagrams), The expression for the amplitude may

be written as
el 2o (,e;}
//__Z/ & (K )¢, /@/4.”-
/
/t"

rsJ‘\

/,,I'_-Z-J}

Yl PG 2 gy T (9)

=

where é/f 7//_@ o fy(f// %) are three-dimensionally

transverse polarizations of massless particles (see eq.(2)for
(& =142 data i 5?; are spinors determining proton and anti-
proton, A =—4—4, is momentum of virtual quantum. The vector
particles interaction vertex /;

Juy is
[ =—fjor =i~ (5 =4, ~ g, (4.,

(I0)

L5



It is clear that

= K - 2
:%y.déﬁy-—-‘“ !(Eiéé‘ﬁ;é?
57 sl T ¢il)
A/J"V /uy___ (,Z =2 0 /!
It follows in particular that 4 < (k%kfjtdéff ij :

Thus the amplitude is four-dimensionally transverse in momentum
of one of quanta only when the other gquantum is physical. The
reasons of this situation were already discussed.

Sum the square of matrix element over the polarizations

of final particles by means of relation

a/ Gl (42 )( % /qf+ f/”/-,e},é;,,

The summation over polarizationsof the first guantum because of
relation 4, ¢ (X}//f’_,_, /////apr- d comes'to substitution

FF, ——d;n”ﬂr . But after that it is impossible to sum.
by means of tensor —*jgﬂf over polarizationsof +the second
quantum as it is seen from (II). It is impossible, in essence,
because we introduced by the substituticn tﬁ;f'—ﬁ**jjﬂwf
unphysical polarizations of the first particle. With the help

of (II) the next expression for summed over polarizations

square.of natrix element may be obtained

S LU = by b 21 s 10

SHed ! x4
(I3)

It is clear that the analogous result is obtained for imaginary
part of the process with two massless quanta in intermediate

state, In covariant technique /I0-~I4/ the second term is comnnected

I4



with interaction of fictitious scalar particles,
Notve, that in the case of the same process but for the

massive quanta the result is

P L Ay

5 55
(k=T A /Z/

The difference of the coefficients at the second term /8, 22, 253.

(14)

I6/ in (I3) and (I4) in the limit of 4 = 0 is comected with
the contribution of the third polarization which does not disap-
pear at /af= O (see eq.(ﬁ.4) of Appendix).

3. The massive Yang-Mills field in the radiation gauge.

It is seen from the results of the above section that the
singularity of amplitude in mass is connected with the interac~
tion of longitudinal quanta that does not disappear atl/y = 0
in the perturbation theory. So it is natural to pass directly
in the Lagrangian desc¢ription from ?ﬁfﬁb/ operators to

éﬂ,ﬂf}’ operators describing three-dimensionally transverse
quanta 5’,,,6:«;’; = ﬂ /""7—‘: 4,2,-‘-’7/ and to 5/2’/ operators
determining three~dimensionally longitudinal quanta. The aris-
ing formalism is generalization of radiation gauge to the non-
Zzero mass case, The analogous description of neutral vector
field continuously turns at };; = O inbo formalism of radiation
gauge for quantum electrodynamics /2I/. The above transition

to the fields {;; and 6 is realized conveniently with
the help of substitution which is represented as gauge trans-

formation

éz :=‘j“_fighf—jg;éigfxurﬁjijz O Ay = O |
.//J': j"fy _ (15)




For shortening in writing we use matrix designavions in (I5) and

below : every isotopic .vector € corresponds to matri_x C=CC=
=riiCs (%FMZ/ZZJ% ﬂ(.,/.: 42;"7/. Matrix S depends on

6 ~field and is unitary and unimodular., The various parametri-
zations are known to be possible for such matrix, We shall wuse

two of them

j":.- @b[—{‘—-y—-fﬁzf/ (168)

= /—‘; b 7 6(x)
i s j"‘; 6 (x) (16D)

The Lagrangzan of the <fields

2, aod 6 is obtained by
substituting (15) into +the Lagrangian of the / field (see(I))
(the substitution changes the form of the massive term only) :

Z= "{“/%"/“ZZ/UF/”//)/“H /“’/f?//&/wi}// 4. +2,)*
$ i +F T

The field strength /{W == é’uﬁu e f-’//;fo o j

depends on 4, Jjust as see (I)) depends o / :
2. 8 Tl ( ()) p n G ;

--.._.

the operator %u = %u; ;é“ / _//; 2:/

is fermion current. The expression for the operator
Z i = ( ng—% 5 5 2k at the parametrizations (I6a,b)is
) —-35____{__2[ _//**"Z"ﬂ‘{"‘%‘b@’ﬂ{/

uIT e ’Zﬁy (18a)




& A peiasn

2 TTei%G Vit (16b)

Note, that the Lagrangian of self-interacting scalar 6§ -

field — 2 coincides with the phenome-
Llm il

nological Lagrangian of « -mesons, In particular at the alge-
braic parametrization (I8b) we obtain Lagrangian in the Wein-
berg form /25/

Now we shall formulate the results obtained in the present
section and then return to the construction of canonical forma-
lism and the perturbation theory.

The point of the above transformation is that the descrip-
tion of free fields 6}}, and 0 parmits%' the limiting transition
to zero mass in contrast to Proca formalism. The O -field in-
teraction vertices arising at the expansion of Lagrangian in the.
coupling constant &y' are singular in mass.Then the unrenorma-
1lizability in the perturbation theory becomes obvious. For
example at the algebraic parametrization (I8b) Lagrangian is as

follows

+2f-§45c?5__£56/f‘;36'5’{+... (19)
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Here all the cancellations of terms singular in mass considered
above are taken into account automatically. Note, that just as in
the case of using radiation gauge for the massless field,in our

case (. is not an independent dynamic variable, but is expressed

o
through &, and éj and their first time derivatives. (However
at the canonical description in Proca formalism éf is also expres=-
sed through the momentum conjugated to éi-. But in contrast to
our formalism this connection does not allow the tramsition ¥o
zero mass). The isolation of definite helicity used by us depends
on the coordinate frame, But it becomes covariant in the zero
mass limit,

Thﬁugh in the perturbation theory the limiting tramnsition
to xp(: 0 is absent, it is allowed in the complete Lagrangian(I?7)
including (I8a, b). In this limit the interaction of & -field
with the other fields vanishes and QL operator describes  the
massless Yang-Mills field in radiation gauge. Thus it seems to
be guite natural that in the zero mass limit the amplitudes of
the processes with the helicity * I gquanta and fermions turan into
corresponding amplitudes of the massless theory which is known
to be renormalizable. Since in the perturbation theory for the
Yang-Mills field with mass the divergences form the series in
f/!'? /ff"’ (/ is the cut-off parameter) then the existeace of the
continuous limiting transition to M= O means that while summing
these series the power divergences disappear and the correct
theory is renormalizable at !;{740 also., Note, that the obtained
Lagrangian satisfies the renormalizability criteria beyond the
frame of perturbation theory which were suggested in /26, 27/

(see also /28/ where these criteria are applied to the massive

Yang-iiills field theory in Boulware formalism /22/).



EFmphasize that the requirement of continuity in mass av
!/1 - O is natural from physical point of view if the considered
theories have sense, Indeed it seems strange that say the
process of fermion annihilation into the massless particles may
be distinguished physically from the analogous process with the
massive particles with Compton length essentially exceeding the
size of the experimental set. ‘

Tf zero mass limit exists then at high energies (apparent-
ly at £?2¥>i§£') the amplitudes of the processes without the
longitudinal quanta coincide with the corresponding amplitudes
of the massless theory and the quanta of zero helicity are not
producZed.

Now let us construct the canonical formalism for Lagran-
gian (I7). The calculation is given for the case of algebraic
parametrization (I8b) where it is more simple. The canomnical
momenta for f%, and 6 .fields are

5dL
e 3/44/“0 (20)

J i
== (22N @

p = 1L A6 / /
3(3,6) //.f,L{/ -—;u-o” /+755 (22)

The vanishing of the canonical momentum for (¢, field
means that this field is not an independent variable and is
expressed through other dynamical variables. To obtain this

expression we use the time component of Lagrangian equations of

motion

/u;éav +/6f ‘a, +//Z /[/o /_/+/ =0 (25)



;

-_Passing to the canonical variables we obtain the equation for &,
Da, = 46, —2ig/an, bt [~y i % aa, B0 ])=
T _7/5«M//5M/+///m2;§{//0//+2§—5 (24)

The .0 operator may be written as

O=a(l-gala,decd) @

By general rules we obtain the following expression for Hamilto-

| nian

A= H ) S B F b+ F
B - -

Ak y&vﬂﬁﬂ; Jm a;;/'—' '?z‘/é;;,; d;ﬂ/&;,; &’M/—fﬂﬁ/ﬁ/m+

Y it Sl
-+7pfa;';/qkééf}¢f' él,d:/-iééf_ﬁ, 5 oy

i > }’,Z L34 / gnﬁlér{ s
il 4"//25/%2 (1 + %07

(26)

where &, is determined from (24)

o = ﬂ"é/; -;ﬁ/&m,ﬁm/@u //“2%4;0//7#5}5/(2?) '

For quantization of the fields we set the canonical com-

]
|

mutation relations -
[@xlzt) pl G )= id7 (6., ~54.4, )3(7-5)
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[6%(z 1) /0/”/5 z‘Z/: (87 (5-F) (29)

The indices « ,/5( a(,/f - 1,2,3) are isotopic ones so that
To finish the .coxistruction of canonical, formalism note

thet the expression (26) for Hamiltonian must be symmetrized in

'_Bose-cperators and antisymmetrized in Fermi-operators.

- Before going to the perturbation Theory we give the expres-
sion for Hamil‘bqnian in the case of exponential parametrization
(see exp,.(I8a) for Z/, ). Just for a change we use now the

usual isovector notation, not matrix one

Here : |
scnllf

2_/—-m£{ j-? 5 / 5 | 2: o/,é?
%f(}/"_ LET /‘"(/ e r % (31)

and 4, is determined by |

.05’1 =A (/h{/{’ﬁifvifi ==/: +Z/a_;..x/b:;, +

(32)
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The Hamiltonians (26) and (30) lead of course to identical
amplitudes on the mass-shell and the choice of (26) and (30) is
determined from convenience reasons.

Let us go to interaction representation, In zero order in

the coupling constant we obtain from egs.(2I, 22, 27)

= dadn (/-4

(33)

Using free equations of motion and expressions (33) we obtain

Green functions of free fields

Lk

Ly Xre ot Of T,

T e) = e T N0)p=8", o

> for sl (35)
The 6 field may be substituted”by the new field o

= ( / /i ) éf)/ : Green function of which has the usual form,

Il

To obtain the interaction Hamiltonian in interaction re=-
presentation we are to omit in expressiomns (26), (30) the terms
of the zero order in the coupling constant amd replace /é',,.,
aad 4 by da, end (I -/,(’A"’)"I AT o

For illustration we present the graphs describing singular
in /a parts of the amplitudes of processes /@/f ik 7 { +5 .
and /9% — 0/ 5'+{+5 (see Fig.3 and 4 whe:r-e dotted
lines correspond to ({-particles).
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The simple calculations lead to results corresponding in those
in the Appendix,
Point out some peculiarities of the perturbation theory.
The interaction Hamiltonian is not a polymom in fields and the
number of primary vertices is infinite, This fact is due to
non=polynomiality of the part of Hamiltonian which contains
6 —field as well as to expansion in fields /I7-20/ of opera-
O {aris:!.ng in Hamiltonian after the substitution of &, .
The noncommutativity of operations of time differentia-
tion and | -ordering leads to the so-called WorHerBAls: ig
known these terms may be omitted if simultaneously one repla-
ces interaction Hamiltonian by interaction Lagrangian with
the opposite sign., We have checked that this statement takes
place for self-interaction of O ~field. Besides, if the terms
with the normals are not taken into account, then Cfmiield
enters the right-hand side of the eqs.(27), (32) determining
d, in 2, combination only. Taking into account this re-
mark the most singular in!/( terms become covariant in every

order of perturbation theory.
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After the mentioned modification the Hamiltonian has zero
mass limit(in contrast to the original form (26), (30)) and
coincides in this limit with the Hamiltonian /I8-20/ of the
‘massless Yang-Mills field in the radiation gauge.

Note also, that the representation of interaction Hamilto-
nian as ,4ﬁ¢-product, that is the omission of diagrams which
contain the lines beginning and ending at the same point, is in-
correct as it leads to the contradiction with the current conser-
vation /I9/. '

But it may be shown that the summing of all mentioned
diagrams with virtual 6f-particles leads to the function of
the type exp (— f‘g/[%_a‘?) (at expamential parametrization)
that is to vanishing quantity. From our point of view this
circumstance is one more argument supporting the suggestion of
the continuity in mass at /¢(= O and renormalizability out of
the frame of perturbation theory.

- In conclusion the authors sincerely thank B.I.Ioffe and
V.V,Sokolov for the invariable interest to the work and

discussions,
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Here we shall calculate in the limit /u > O the ampli-
g 5 — 4 747,
tudes of the processes /b —> /5’/-’
¥ 0

/0/?' T {57 f / f where all final particles have zero
helicity. The calculations are based on generalized Ward identi-
ties which may be obtained easily in Proca formalism, for examp-
le, by means cf reduction formula, These identities are as

follows

&rise B, 0
/g%./[/ {/%/?/:’ //f}}.“, ﬂ-,..,{/;,,.,;{;,):

,f/% £/ %? /»g/’/g%{ (4 +§-/x
X i /4 /’E;’; ‘é’c""’?}“u fﬂ/

RS £, .1
where tensor 4”,/4/7/4, Kiyy /*’ 7%/  determines

&) oo & oo a;, Ay
The process with # vector quanta (not necessary physical).
Index «; shows the charge state of the i-th particle with
momentum £, ,The tensor in the right-hand side corresponds
to the amplitude of the process with n-I quanta which is
obtained out of original one by means of substituting of one |
particle with momentum A v‘-f/ for particles ¢/ :,//
the momenta are considered as outgoing. Propagator v, /.é’/ is

determined by eq.(B), the tensor g / K / which is inverse
to it is

-7 2 2 '
Dlle) = utep?)— 4, 4 -
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The amplitude of the process in which the Ist and the 2nd
quanta are longitudinal is expressed by eq.(8). Let for definite-
ness the f:i_rsf quantum haw negative charge and the second one have
positive charge. By means of Ward identity (A.I) one may transform

the term in 4/ containing Lou,

i =<7 ey Do (4, + %) /Z/{,.../a,, Pt

2

g e o o S

(A.3)

We have 'l;a.k:en into account that /gy / A:'z/ — ’E.;g, Aoy

since —/((

+
In the case of /0/9 — éy f process the general eq.(A.3)
leada in /(- O limit to matrix element

("f} ""'f}/z | (A.4)

-t
The second term in (4,3) does not contribute to L cat = O

as y /’z tensor describing the.interactmn of two vector
quanta and fermions is non-singular in mass, The "tail" of vector
propagator (see disgram.b, Fig.2) may be dropped out because of
the transversality of the nuckon vertex.

Let now .in eq.(A.3) the polarization .fector of the third
qua.ntum_ (for definiteness, positively charged one) be three-dimen—
Sionally longitudinal, Again using Ward identities for the trans-
formation of the terms which.are proportional bo Kyt /a, we get
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—SEAY b /50 WD) 3 o e el 0. o
if Pl /Af//k'//a@}/ P Tt /Jg/’""/"" S e

m‘{*f iy &y ,,Jﬂezf+@/ Yapt - fn Gty e G —

TelelE] 7
e &, &y 4 b L
ifﬂ//z//»‘;/ tpu 4v Ty (4 /4 L foo G-
/E?/x;//&j, / 3 4‘4/’-’—'/4‘/4"7"” G2 S (4.5)

Let us apply this expression to /ﬁ? — / Hf +/ >
process, Taking into account the transversality of the nucleon
vertex,it is not difficult to show t:hat the functions

ET
%A/f-.t-f-f—f/j //(-f-—(-ﬁ-l/ /4/, &"f" @// é’?“@"/
are regular in /u and the singularity of tensor .///a /‘2- Az, ‘;@/
does not exceed ““"j'g- - Therefore the first, the second ang
the third terms contribute to the singular part of amplitude
uﬁder consideration, in the last two ones only the "tails" of
propagators ﬁ, A / Ky + Ko(z) / being essential. Using Ward
identity for the calculation of the contribution of these "tails"
we find the final exXpression for the amplitude of the process

/bﬁ.’ —> / éﬂ /+ accurate up to terms -—-u/a .

= o o ZE 7 / S
e +é)§@%fi“47“/§"/ (4.6)

For computation of the amplitude of the process /éf/? —>
-+
’/ / / / with longitudinal quanta it is necessary

27



to put into eq.(A.5) the explicit expression for tj/-;f/ /,.f;, /
and to use again Ward identities, The final result is

~++0 [ p* 7/

g A sk MR ke &) TR
A’égzcé} (%’+— ARV o s ﬁ%’,&,€'4LA§y)z y
M;-%- /) 7,
Ky f U, +
(4 + 4 + é/_f (7

(4.7)

Notice, that at the concrete calculations we operate in
the other succession than at the general proof of singularity
of amplitudes,

28



£ W H

15,

20,

24,

2.

REFERENCES

Sh,L.Glashow, Nucl.Phys., 10, I07, I959.

A.Komar, A,Salam, Nucl.Phys., 2I, 624, I1960.

H.Umezawa, S,Kamefuchi. Nucl.Phys., 23, 399, I%I.
S.Kamefuchi, L.O'Raifeartaigh, A,Salam. Nucl.Phys., 28,529,
1961,

P.A,Ionides, Nucl,Phys., 28, 662, I961I.

A.Salam, Phys.Rev., 127, 33I, I962.

M.Veltman. Nucl,Phys.,, B7, 637, 1968,

A,A .Slavnov., Preprint ITP-69-20, Kiev, 1969,

E.S.Fradkin, I.V.Tyutin. Phys.Lett., 30B, 562, 1969.
R.P.Feynman., Acta Physica Polonica, 24, 697, 1963,
B.S.DeWitt. Phys.Rev,, 162, 1195, 1967.

L.D.Faddeev, V.N.Popov, Phys.Lett., 25B, 30, I1967.
V.N.Popov, L.D.,Faddeev., Preprint ITP, Kiev, 1967,
S,Mandelstam. Phys,Rev., 175, 1580, I968.

J . Reiff, M,Veltman, Nucl.Phys., BI3, 545, I1969.

R.Kallosh. Preprint N I8, Lebedev Phys,Inst., Moscow,I970.
J.Schwinger, Phys.Rev,, 125, 1043, I962.

J.Schwinger., Phys.Rev,, I27, 324, 192,

I.B.Khriplovich. Yadernaya Fizika, I0, 409, 1969,
A.M.Altukhov, I,B.Khriplovich, Yadernaya Fizika, 1II,902,I1970,
D.G.Boulwar=, W.Gilbert, Phys.Rev., I26,1563,19%2,
D.G.Boulware. Annals of Phys., 56,I40,I970.

A,A,Slavnov, L,D,Faddeev. Teoreticheskaya i Matematicheskaya
Fizika, 3,I8,I970. '

E,5,.Fradkin, I.V.Tyutin, Preprint N 27, Lebedev Phys.Inst.,
Moscow,1970,

S.Weinberg. Phys.Rev,Lett,, 18,I88,1967.

G,V,Efimov. Zh.Eksp.i Teor.Fiziki, 44,2107,19653,
E,S,Fradkin, Nucl,Phys., 49,624,193,

A .Salam, Preprint IC/70/7, Trieste,I1970,



Felie
e

LI T

JSRE GB0T Wi Vel E

- v

] 3 ==

".-' 1 & ¥ : & e L1'
B

LFArS

BB e wuf el e

R

o
L
y
pi
|
o
o |
.
:
:

& 7 e L -
i & ¥ s T e
w § e 1 - ! o5 o B gl roxim Bl
bl ¥ il S S T il i a hafl A e G W AR -
"
el - =il P e R 15-‘{‘ L
= e g i __."‘_l: . T q g Y . i ey T
+ G LRl fe, 8 i : g 3 } L ey B 3 L_-, e W N R
= W Bt iy o o = 1 2 %
L % e T o # . 4

A - - &
z i 2= 2 ny g L X
o ok v % - -
. i g B £
PR =
.
: = 5 u ¥ g R = e
o . | B l'!-;‘b "'I'; '.f a § b
% Y L] " oK o Ll T * & - Nk
ol bl e £ a8 |

i, e % g

: O.TBETC;T_'EEP-H'HHE 28
[lonnucadHo ¥ neda

3akaa Ne 38

£k A
e T ¥

ot 17.1Y~1
Yen, 1,7 nmeu.n,, tupax 250 2ka. Becm;a-r-ﬂib

s

o 1, = P I e T o R T =1
— _i::'--'?."‘f: e SR B
<

BRUIFCK 3 ﬁ%ﬂﬂﬁﬁmgg
a0 gE n ol

OrnedaTaHo Ha poranpunre B Mfid CO AH CCCP ,sB.

1
Ty
ot
i g
Lk

s
- ol

B ke
Y

i S
&
R ]
- -.E-
& b
- ==
T




